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Abstract

This paper presents a boundary controller to reduce transverse motion of flexible marine risers driven by a hydraulic

system at the top end of the risers under environmental disturbances induced by waves, wind, and ocean currents. The

boundary controller is designed based on Lyapunov’s direct method and the backstepping technique. Proof of existence

and uniqueness of the solutions of the closed-loop control system is carried out by using the Galerkin approximation

method. Simulation results illustrate the effectiveness of the proposed boundary controller.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

As exploration and production for natural resources enter deeper ocean waters, control of the dynamics of
flexible marine risers connecting a oil and/or gas offshore platform with a well at the sea bed, becomes a vital
task for both ocean and control engineers. In general, a riser is subject to nonlinear deformation dependent on
hydrodynamic loads induced by waves, ocean currents, tension exerted at the top, distributed/concentrated
buoyancy from attached modules, its own weight, inertia forces, and distributed/concentrated torsional
couples. Since the riser dynamics is essentially a distributed system and its motion is governed by a set of
partial differential equations (PDE) in both time and space variables, modal control and boundary control
approaches are often used to control the riser in the literature.

In the modal control approach, see Refs. [1,2], distributed systems are controlled by controlling their modes.
As a result, many concepts developed for lumped-parameter systems in Refs. [3,4] can be used for controlling
the distributed ones, since both types can be described in terms of modal coordinates. The main difficulty is
computation of infinite-dimensional gain matrices. This difficulty can be avoided by using the independent
modal-space control method, but this method requires a distributed control force, which can be problematic
to implement. One way to overcome this problem is to construct a truncated model consisting a limited
number of modes. In order to describe the behavior of a flexible system in a satisfactory fashion, it is necessary
to include a large number of modes in the model. Thus, a characteristic of a truncated model is its large
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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dimension, i.e. it is impractical to control all modes. Therefore the control of such truncated systems are
restricted to a few critical modes. This also means that other modes are not controlled, and could be unstable.
In fact, truncation of the infinite-dimensional model divides the system into three groups modes: modeled
and controlled, modeled and uncontrolled (residual), and un-modeled. Only the modeled modes are
considered in the control design. In addition, observers are needed to provide the system output for these
modeled modes from the actual distributed system. The use of these observers in combination with truncated
models of distributed system leads to a spill-over phenomenon meaning that the control from actuators not
only affects the controlled modes but also influences the residual and un-modeled modes, which can be
unstable, [5].

The boundary control approach is more practical and efficient than the modal control approach since it
excludes the effect of both observation and control spill-over phenomenon. In the boundary control approach,
distributed actuators and sensors are not required. In addition control design based on the original PDE
model instead of a truncated model, improves the performance of the control system. In recent years,
boundary control has received much attention from the control community. Design of boundary controllers
for distributed systems has been usually based on functional analysis and semi-group theory, see Refs. [6,7],
and the Lyapunov’s direct method, see Refs. [8,9]. The Lyapunov’s direct method is widely used since the
control Lyapunov functions/functionals directly relate to the kinetic and potential energies of the distributed
systems. Using the Lyapunov’s direct method, various boundary controllers have been proposed for flexible
beam-like systems. In Ref. [10], the boundary stabilization of a beam in free transverse vibration is considered.
The control law is a nonlinear function of the slopes and velocity at the boundary of the beam to provide
exponential stabilization a free transversely vibrating beam via boundary control without restoring to
truncation of the model. The coupling between longitudinal and transversal displacements is also taken into
account. Recently, in Ref. [11] an active boundary control is proposed for an Euler–Bernoulli beam, which
enables one to generate a desired boundary condition at designated positions of a target beam based on
structure transfer matrix and the optimal control methods. It should be noted that the active boundary control
in Ref. [11] is implemented at various locations of the beam. Therefore, this method closely relates to the
modal control approach although it is called boundary control. In Refs. [12–14], the authors proposed an
elegant method, which was developed for stabilizing an unstable heat equation in Ref. [15], to design boundary
controllers for strings and beams with pretty simple dynamics. The fundamental idea is to find a coordinate
change to transform the string or beam system to a target system, which can be stabilized by a boundary
controller. This idea relies on feasibility of finding a kernel, which is a solution of a partial differential
equation depending on the system dynamics. The major difference between the controllers proposed in
Refs. [12–14], and the damping boundary feedback controllers in Refs. [8,10] is that the controllers in
Refs.[12–14] do not rely on a passivity property from the actuator to the sensor. However, the method
in Refs. [12–14] is hard to apply to the riser system addressed in this paper due to difficulties in solving a
partial differential equation to find a proper kernel. It should be mentioned that in Refs. [16,10,11,8],
two-dimensional strings and beams are considered, and distributed forces including the structures’ own weight
are ignored. Moreover, in Refs. [16,10,11,8] no proof of existence and uniqueness of the solutions of closed-
loop systems was given. It is well-known that there are systems governed by initial-boundary PDEs, whose
solutions do not exist or are not unique. For any control systems to be useful in practice, existence and
uniqueness of the solutions of the closed-loop control systems are as vital as stability. Moreover, there are no
actuators that can provide immediate forces/moments for control implementation at the riser boundary. If the
actuator dynamics is ignored, the performance of the controlled system can be significantly reduced, and can
be unstable in some cases [17]. It is therefore necessary to include the actuator dynamics in the control design.

This paper considers a problem of reducing transverse motion of flexible marine risers driven by a
hydraulic system at the top end of the risers under environmental disturbances induced by waves, wind and
ocean currents. Based on the energy approach, the equations of motion of the riser-hydraulic system are
derived. We show that the Lyapunov direct method and the backstepping technique can be used well to design
a controller to drive the hydraulic system at the top end of the riser. Proof of existence and uniqueness of the
solutions of the closed-loop control system is carried out by using the Galerkin approximation method.
Stability analysis is carefully analyzed. Simulation results illustrate the effectiveness of the proposed boundary
controller.
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2. Preliminaries and mathematical model

2.1. Preliminaries

This subsection presents two tools that will be used in the control design. The first one is a disturbance
observer to estimate un-modeled forces in the dynamics of the hydraulic system. The second tool is
a p-times differentiable signum function to approximate the signum function in the dynamics of the hydraulic
system.

2.1.1. Disturbance observer

Consider the following system

_x ¼ f ðxÞ þ uþ dðt; xÞ, (1)

where x 2 Rn, f ðxÞ is a vector of known functions of x, u the control input vector, and dðt;xÞ a vector of
unknown disturbances. We assume that there exists a nonnegative constant Cd such that k _dðt;xÞkpCd . Now
we want to design the control input u to stabilize system (1) at the origin. It is obvious that if we can design a
disturbance observer, d̂ðt; xÞ, that estimates dðt; xÞ sufficiently accurately, then the control input u is
straightforwardly designed as u ¼ �kx� f ðxÞ � d̂ðt;xÞ with k a positive-definite matrix. The disturbance
observer is given in the following lemma.

Lemma 1. Consider the following disturbance observer:

d̂ðt;xÞ ¼ xþ rðxÞ,

_x ¼ �KðxÞx� KðxÞðf ðxÞ þ uþ rðxÞÞ, (2)

where KðxÞ ¼ qrðxÞ=qx, rðxÞ is chosen such that the matrix KðxÞ is positive definite for all x 2 Rn.
The disturbance observer (2) guarantees that the disturbance observer error deðt; xÞ ¼ dðt;xÞ � d̂ðt;xÞ
exponentially converges to a ball centered at the origin. The radius of this ball can be made arbitrarily small

by adjusting the function rðxÞ. In the case Cd ¼ 0, the disturbance observer error deðt;xÞ exponentially converges

to zero.

Proof. (see Do and Pan [18]). The disturbance observer (2) is a dynamical system. The variable x is generated
by the second equation of Eq. (2), which is an ordinary differential equation, with some initial value xðt0Þ,
where t0 is the initial time. The choice of the function rðxÞ, which results in the matrix KðxÞ directly
affects performance of the disturbance observer. The larger eigenvalues of the matrix KðxÞ are, the
faster the response of the disturbance observer is, with a trade-off of a large overshoot of the observer,
and vice versa. An application of the disturbance observer (2) to an active heave compensation system
is given in Ref. [18]. To illustrate the effectiveness of the disturbance observer (2), we perform some
numerical simulations. In the simulations, we consider a scalar system in the form of Eq. (1) with f ðxÞ ¼

arctanðxþ x2Þ and dðt;xÞ ¼
P5

i¼1 ðsinðitÞ þ sinðxÞ sinðit=2ÞÞ. The function rðxÞ is taken asrðxÞ ¼ 20ðxþ x3=3Þ.
This choice gives KðxÞ ¼ 20ð1þ x2Þ, which is positive for all x 2 R. The initial conditions are xð0Þ ¼ 1 and
xð0Þ ¼ 0. The control law is designed as u ¼ �kx� f ðxÞ � d̂ðt;xÞ with k ¼ 5. We run two simulations.
In the first one, the disturbance dðt;xÞ is ignored in the control design, i.e. we set d̂ðt;xÞ ¼ 0 in the above
control law. Simulation results are presented in the top two sub-figures (A and B) of Fig. 1. In the second
simulation, we include d̂ðt;xÞ in the control law. Simulation results are plotted in the bottom two sub-figures
(C and D) of Fig. 1. It is seen from the sub-figures (A and C) that in the case where the disturbance
dðt;xÞ is ignored in the control design, the state x converges to a much larger ball than the case where the
disturbance observer is used in the control design. In the sub-figures (B and D), the disturbance dðt; xÞ is
plotted in the solid line while the disturbance estimate d̂ðt;xÞ is plotted in the dash-dotted line. From the
sub-figure (D), we can see that the disturbance observer provides an excellent estimate of the time and
state-dependent disturbance dðt;xÞ. &
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Fig. 1. Effectiveness of the proposed disturbance observer: (A) state x without disturbance observer; (B) actual disturbance dðt; xÞ plotted
by solid line, and estimate of disturbance d̂ðt;xÞ plotted by dash-dot line; (C) state x with disturbance observer; (D) actual disturbance

dðt;xÞ plotted by solid line, and estimate of disturbance d̂ðt; xÞ plotted by dash-dot line.
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2.1.2. p-times differentiable signum function

Definition 1. A scalar function hðx; a; bÞ is called a p-times differentiable signum function if it enjoys the
following properties:

ð1Þ hðx; a; bÞ ¼ �1 if �1oxpa,

ð2Þ hðx; a; bÞ ¼ 1 if xXb,

ð3Þ � 1ohðx; a; bÞo1 if aoxob,

ð4Þ hðx; a; bÞ is p times differentiable with respect to x (3)

where p is a positive integer, x 2 Rþ, and a and b are constants such that ao0ob. Moreover, if the function
hðx; a; bÞ is infinite-times differentiable with respect to x, then it is called a smooth signum function.

Lemma 2. Let the scalar function hðx; a; bÞ be defined by

hðx; a; bÞ ¼ 2

R x

a
f ðt� aÞf ðb� tÞdtR b

a
f ðt� aÞf ðb� tÞdt

� 1, (4)

where the function f ðyÞ is defined as follows:

f ðyÞ ¼ 0 if yp0 and f ðyÞ ¼ yp if y40 (5)

with p being a positive integer. Then the function hðx; a; bÞ is a p-times differentiable signum function. Moreover,
if the function f ðyÞ is taken as

f ðyÞ ¼ 0 if yp0 and f ðyÞ ¼ e�1=y if y40

then the function hðx; a; bÞ is a smooth signum function.
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Fig. 2. A twice differentiable signum function.
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Proof. (see Do [19]). An illustration of a twice differentiable signum function (a ¼ �0:1; b ¼ 0:1) is given in
Fig. 2. &

2.2. Mathematical model

In this subsection, we develop equations of the transverse motion of the riser, and of the hydraulic system.
These equations will be used for the boundary control design in the next section. In developing these
equations, we make the following assumption:

Assumption 1. (1) The riser can be modeled as a beam rather than a shell since the diameter-to-length of the
riser is small, i.e. we consider the riser as a slender structure.

(2) Plane sections remain plane after deformation, i.e. warping is neglected.
(3) The riser is locally stiff, i.e. cross sections do not deform and Poisson effect is neglected.
(4) The riser material is homogeneous, isotropic and linearly elastic, i.e. it obeys Hookes’s law.
(5) Torsional and distributed moments induced by environmental disturbances are neglected.
(6) The riser deforms in one vertical plane, and its axial motion is ignored.

Remark 1. Items (1–4) mean that the riser will be modeled as a Bernoulli-type beam and not of the
Timoshenko type, and that the extension of the riser axis small. Bernoulli–Euler models are satisfactory for
modeling low-frequency vibrations of beams. Item (5) implies that we consider fluid/gas transportation risers
rather than drilling risers, and that moment induced by the asymmetry of the relative flow due to vortex
shedding is ignored. Item (6) means that we consider the transverse motion of the riser. The axial motion of
the riser is usually compensated by an active heave compensation system [18].

The riser coordinates and the hydraulic system, which provide the boundary control force in the transverse
direction of the riser, are presented in Fig. 3. It is assumed that the riser is subjected to a constant axial force
P0 provided by an active heave compensation system. In Fig. 3, the Earth-fixed coordinate system is denoted
by OXZ with O fixed to the sea bed. The riser is connected with the hydraulic system via a ball joint, and is
also connected to the sea bed via a ball joint. This configuration results in moment free at both ends of the
riser. The Earth-fixed system is ðOXYZÞ, where O is the bottom ball-joint of the riser, and the OZ axis is along
the initial riser. Let Zðz; tÞ be the transverse displacement of the riser. Let f ðz; t; uðz; tÞ; Ztðz; tÞÞ be the transverse
distributed damping force and distributed external force induced by waves, wind and ocean currents, where t

denotes the time, uðz; tÞ denotes the component of the water particle velocity in the transverse direction, and
Ztðz; tÞ ¼ ðqZ=qtÞðz; tÞ, i.e. the velocity of the riser in the transverse direction at ðz; tÞ. The distributed transverse
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force f ðz; t; uðz; tÞ; Ztðz; tÞÞ can be given as [20,21]:

f ðz; t; uðz; tÞ; Ztðz; tÞÞ ¼ f D þ f L,

f D ¼ �ODZtðz; tÞ; OD ¼ cþ CD

rwD

2

ffiffiffi
8

p

r
su

 !
,

f L ¼ CM

rwpD2utðz; tÞ

4
þ CD

rwD

2

ffiffiffi
8

p

r
suðz; tÞuðz; tÞ, (6)

where f D and f L are referred to as the distributed damping and external forces, c is the linear viscous damping
coefficient, rw the water density, CD the drag coefficient, D the riser diameter and suðz; tÞ is the root mean
square of the water particle velocity, uðz; tÞ. It is noted that in Eq. (6), the quadratic term of the drag force due
to the relative water velocity, Ztðz; tÞ � uðz; tÞ is approximated by a linear expression involving the root mean
square of the relative velocity, and moreover, the relative velocity is approximated by the water velocity,
uðz; tÞ. We assume that the distributed external force f L is bounded for all z 2 ½0;L� and tX0. To develop
equations of motion of the riser-hydraulic system, we first consider the riser and then move to the hydraulic
system.
2.2.1. Equations of the transverse motion of the riser

To derive the equations of the transverse motion of the riser, we use the extended Hamilton’s principle:Z t2

t1

dðT � V þW c þW bÞdt ¼ 0,

dZðz; t1Þ ¼ dZðz; t2Þ ¼ 0, (7)
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where T is the kinetic energy, V is the potential energy, W c is the virtual work by nonconservative forces, and
W b is the virtual momentum transport at the boundary.

The kinetic energy T consists of the kinetic energy of the riser and the piston of the hydraulic system, and is
given by

T ¼
mo

2

Z L

0

Z2t ðz; tÞdzþ
mH

2
Z2t ðL; tÞ, (8)

where mo ¼ rA with r the mass per unit length and A the cross-section area of the riser, and mH the mass of
the piston of the hydraulic system.

The potential energy V is given by

V ¼
EI

2

Z L

0

Z2zzðz; tÞdzþ
P0

2

Z L

0

Z2zðz; tÞdzþ
EA

8

Z L

0

Z4zðz; tÞdz, (9)

where E is Young’s modulus, I the moment of inertia of the riser cross section and P0 the constant axial force.
It is noted that in Eq. (9) the first term is due to the bending moment, the second term is due to the riser
tension, and the last term results from the strain energy.

Variation of the virtual work dW c by nonconservative force f ðz; t; uðz; tÞ; Ztðz; tÞÞ is given by

dW c ¼

Z L

0

f ðz; t; uðz; tÞ; Ztðz; tÞÞdZðz; tÞdz. (10)

Variation of the virtual work dW b by the virtual momentum transport at the boundary is given by

dW b ¼ ðAHPH � Dðt; ZtðL; tÞÞ � bHZtðL; tÞÞdZðL; tÞ, (11)

where PH ¼ P1 � P2 is the load pressure of the cylinder with P1 and P2 being the pressures in the upper and
lower compartments of the cylinder, see Fig. 3, AH is the ram area of the cylinder, bH represents the combined
coefficient of the modeled damping and viscous friction forces on the cylinder rod, and Dðt; ZtðL; tÞÞ is the un-
modeled force acting on the cylinder of the hydraulic system. This un-modeled force can include un-modeled
friction between the cylinder and the piston of the hydraulic system, and external disturbance acting on the
piston of the hydraulic system.

Now substituting Eqs. (8)–(11) into Eq. (7) and integrating by parts result in

Z t2

t1

Z L

0

�moZttðz; tÞ � EIZzzzzðz; tÞ þ P0Zzzðz; tÞ þ
3EA

2
Z2zðz; tÞZzzðz; tÞ

��

þ f ðz; t; uðz; tÞ; Ztðz; tÞÞ

�
dZðz; tÞ � EIZzzðz; tÞdzðz; tÞ

L
0

þ EIZzzzðz; tÞ � P0Zzðz; tÞ �
EA

2
Z3zðz; tÞ

� �
dðz; tÞ

����
L

0

þmHZtðL; tÞ þ ðAHPH � Dðt; ZtðL; tÞÞ � bHZtðL; tÞÞdZðL; tÞ
�
dt ¼ 0. (12)

From Eq. (12) and the boundary conditions resulting from the riser configuration (see Fig. 3) we have

�moZttðz; tÞ � EIZzzzzðz; tÞ þ P0Zzzðz; tÞ þ
3EA

2
Z2zðz; tÞZzzðz; tÞ þ f ðz; t; uðz; tÞ; Ztðz; tÞÞ ¼ 0,

�mHZttðL; tÞ þ EIZzzzðL; tÞ � P0ZzðL; tÞ �
EA

2
Z3zðL; tÞ þ AHPH � Dðt; ZtðL; tÞÞ � bHZtðL; tÞ ¼ 0,

Zzzð0; tÞ ¼ ZzzðL; tÞ ¼ 0,

Zð0; tÞ ¼ 0. (13)
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2.2.2. Equations of the hydraulic system

The second equation in Eq. (13) represents the dynamics of the piston of the hydraulic system with

ZðL; tÞ ¼ xH ,

ZtðL; tÞ ¼ _xH . (14)

Neglecting the leakage flows in the cylinder and the servovalve, the actuator or the cylinder dynamics is
written as [22]

VH

4bHe

_PH ¼ �AH _xH � CHT PH þQH (15)

where VH is the total volume of the cylinder and the hoses between the cylinder and the servovalve, bHe the
effective bulk modulus, CHT the coefficient of the total internal leakage of the cylinder due to pressure and QH

the load flow. The load flow QH related to the spool displacement of the servovalve, xHv, by Merritt [22]

QH ¼ CHDW HxHv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PHS � sgnðxHvÞPH

rH

s
(16)

where CHD is the discharge coefficient, W H the spool valve area gradient, PHS the supply pressure of the fluid,
sgn denotes the standard signum function and rH is density of the oil. It is noted that since the supply pressure
PHS is always higher than the load pressure PH , i.e. there exists a strictly positive constant �1 such that
PHS � sgnðxHvÞPHX�1. Hence, Eq. (16) is well-defined for all xHv 2 R. The servovalve dynamics can be
described by

tHv _xHv ¼ �xHv þ kHviH (17)

where tHv and kHv are the time constant and gain of the servovalve, respectively, iH is the current input to the
hydraulic system. Since PH is usually very large and tHv is usually very small, we scale the pressure PH and the
spool displacement xHv as P̄H ¼ PH=CH3 and x̄Hv ¼ xHv=CH4 where CH3 and CH4 are constants, to avoid
numerical error and facilitating the control gain tuning process. With scaling observation in mind, we write the
entire system of the riser-hydraulic dynamics in a standard state space form for the purpose of control design
in the next section as follows:

moZttðz; tÞ ¼ �EIZzzzzðz; tÞ þ P0Zzzðz; tÞ þ
3EA

2
Z2zðz; tÞZzzðz; tÞ þ f ðz; t; uðz; tÞ; Ztðz; tÞÞ

_x1 ¼ x2,

_x2 ¼ �
bH

mH

x2 �
P0

mH

ZzðL; tÞ �
EA

2mH

Z3zðL; tÞ þ
EI

mH

ZzzzðL; tÞ þ
AHCH3

mH

x3 �
1

mH

Dðt; ZtðL; tÞÞ,

_x3 ¼ �
4bHeAH

V HCH3
x2 �

4bHeCHT

V H

x3 þ
4bHeCHDCH4W H

V H

ffiffiffiffiffiffiffiffiffi
CH3

p g3ðx3;x4Þ,

_x4 ¼ �
1

tHv

x4 þ
kHv

tHvCH4
iH ,

Zzzð0; tÞ ¼ ZzzðL; tÞ ¼ 0,

Zð0; tÞ ¼ 0 (18)

where we have defined

x1 ¼ ZðL; tÞ; x2 ¼ ZtðL; tÞ; x3 ¼ P̄H ; x4 ¼ x̄Hv,

g3ðx3; x4Þ ¼ x4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P̄Hs � hðx4; a; bÞx3

rH

s
; P̄HS ¼

PHS

CH3
(19)
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and the p-times differentiable signum function hðx4; a; bÞ has been used to replace the signum
function. It is noted that the use of the p-times differentiable signum function hðx4; a; bÞ instead of the
signum function sgnðx4Þ in Eq. (18) not only makes the function g3ðx3;x4Þ differentiable with respect to x3 and
x4 but also represents the actual dynamics of the spool dynamics. This is because there is always certain
inaccuracy in manufacturing the servovalve, i.e. the flow in the servovalve does not change its direction
immediately.

2.3. Control objectives

Under Assumption 1, design the control input iH for the riser-hydraulic system given by Eq. (18) to stabilize
the riser at its vertical position in the sense that all the states of the riser-hydraulic system (18) are bounded
and that:
(1)
 when the external disturbance f L is ignored, all the terms jZðz; tÞj,
R L

0 Z2zðz; tÞdz,
R L

0 Z2t ðz; tÞdz andR L

0 Zzzðz; tÞdz exponentially converge to zero for all z 2 ½0;L� and tXt0X0, R R

(2)
 when the external disturbance f L is present, all the terms jZðz; tÞj, L

0 Z2zðz; tÞdz,
L

0 Z2t ðz; tÞdz

and
R L

0 Zzzðz; tÞdz exponentially converge to some small positive constant for all z 2 ½0;L� and
tXt0X0,
It is seen that the control objectives impose on both the displacement and integration of square of the slope,
velocity, and curvature of the riser along the riser length.

3. Control design

A close look at the entire system (18) shows that the system is of a strict-feedback form [4]. Therefore, we
will use the backstepping technique [4] to design the control input iH to achieve the control objective stated in
the previous section. The control design consists of the following three steps.

3.1. Step 1

At the this step, we consider the scaled pressure P̄H , i.e. x3, as a control to design a boundary control law
(i.e. a control law only uses ZðL; tÞ and its spatial and time derivatives) such that it stabilizes the riser at a small
neighborhood of its vertical position. Ideally, we want to stabilize the riser at its vertical position but this is
impossible due to the distributed external disturbances f L induced by waves, wind and ocean currents.
As such, we define

x3e ¼ x3 � a1, (20)

where a1 is a virtual control of x3. To design the virtual boundary control a1, we use Lyapunov’s direct
method. Consider the following Lyapunov function candidate:

W 1 ¼
mo

2

Z L

0

Z2t dzþ
P0

2

Z L

0

Z2z dzþ
EA

8

Z L

0

Z4z dzþ
EI

2

Z L

0

Z2zz dzþ g
Z L

0

zZtZz dz

þ
mH

2
ZtðL; tÞ þ

gL

mo

ZzðL; tÞ

� �2

, (21)

where whenever it is not confusing we drop the arguments z and t of Zt, Zz, and so on; g is a positive constant
to be specified later. Since for all tXt0X0

�
gL

2

Z L

0

Z2t dz�
gL

2

Z L

0

Z2z dzp
Z L

0

zZtZz dzp
gL

2

Z L

0

Z2t dzþ
gL

2

Z L

0

Z2z dz (22)
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the function W 1 satisfies

W 1X
mo � gL

2

Z L

0

Z2t dzþ
P0 � gL

2

Z L

0

Z2z dzþ
EA

8

Z L

0

Z4z dzþ
EI

2

Z L

0

Z2zz dz

þ
mH

2
ZtðL; tÞ þ

gL

mo

ZzðL; tÞ

� �2

,

W 1p
mo þ gL

2

Z L

0

Z2t dzþ
P0 þ gL

2

Z L

0

Z2z dzþ
EA

8

Z L

0

Z4z dzþ
EI

2

Z L

0

Z2zz dz

þ
mH

2
ZtðL; tÞ þ

gL

mo

ZzðL; tÞ

� �2

. (23)

Hence if we choose g such that

mo � gL ¼ c1; P0 � gL ¼ c2, (24)

where c1 and c2 are strictly positive constants, then the function W 1 defined in Eq. (21) is a proper (i.e. positive
definite and radially unbounded) function of

R L

0 Z2t dz,
R L

0 Z2zz dz,
R L

0 Z2z dz and ðZtðL; tÞ þ ðgL=moÞZzðL; tÞÞ
2. We

do not detail the conditions (24) at the moment, but deal with them after the control design is completed since
the constant g needs to satisfy some more conditions later. It is noted that we do not include the riser
transverse displacement Z, like

R L

0 Z2 dz, in the function W 1 because this term causes difficulties in designing
the control a1 later. As such, after proof of convergence of

R L

0 Z2t dz,
R L

0 Z2zz dz, and
R L

0 Z2z dz, convergence ofR L

0
Z2 dz and the riser transverse displacement Z will be proved by using Lemmas 3 and 4 in Appendix A.

Differentiating both sides of Eq. (21) with respect to time t, along the solutions of the first and the third
equations of Eq. (18), and using integration by parts result in

_W 1 ¼ P0ZzZt þ
EA

2
Z3zZt � EIZzzzZt þ EIZzzZt þ

gP0

2mo

zZ2z þ
3gEA

8mo

zZ4z �
gEI

mo

zZ2zz

�

þgEIZzZzz þ
g
2

zZ2t
����L

0
�

gP0

2mo

Z L

0

Z2z dz�
3gEA

8mo

Z L

0

Z4z dz�
3gEI

2mo

Z L

0

Z2zz dz�
g
2

Z L

0

Z2t dz

þ ZtðL; tÞ þ
gL

mo

ZzðL; tÞ

� �
�bHZtðL; tÞ � P0ZzðL; tÞ �

EA

2
ZzðL; tÞ

3
þ EIZzzz � Dðt; ZtðL; tÞÞ

�

þCH3AH ðx3e þ a1Þ þ
mHgL

mo

ZztðL; tÞ

�
þ

Z L

0

ðZt þ gzZzÞf ð�Þ dz, (25)

where we used f ð�Þ to denote f ðz; t; uðz; tÞ; Ztðz; tÞÞ to save some space. Now substituting the boundary
conditions given in Eq. (18) into Eq. (25) results in

_W 1 ¼ �
gP0

2mo

Z L

0

Z2z dz�
3gEA

8mo

Z L

0

Z4z dz�
3gEI

2mo

Z L

0

Z2zz dz�
g
2

Z L

0

Z2t dz�
gLP0

2mo

Z2zðL; tÞ

�
gLEA

8mo

Z4zðL; tÞ þ
gL

2
Z2t ðL; tÞ þ ZtðL; tÞ þ

gL

mo

ZzðL; tÞ

� �
�bHZtðL; tÞ � Dðt; ZtðL; tÞÞ

�

þCH3AH ðx3e þ a1Þ þ
mHgL

mo

ZztðL; tÞ

�
þ

Z L

0

ðZt þ gzZzÞf ð�Þ dz. (26)

From Eq. (26), we choose the virtual control a1 as

a1 ¼
1

AHCH3
�

mHgL

mo

ZztðL; tÞ � k1 ZtðL; tÞ þ
gL

mo

ZzðL; tÞ

� �
� bH

gL

mo

ZzðL; tÞ þ D̂
� �

, (27)
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where k1 is a positive constant to be selected later, D̂ is an estimate of Dðt; ZtðL; tÞÞ. The estimate D̂ is given by

D̂ ¼ �ðxþ kx2Þ,

_x ¼ �
k

mH

x� k Fþ
k

mH

x2

� �
, (28)

where k is a positive constant, and we have defined

F ¼ �
bH

mH

x2 �
P0

mH

ZzðL; tÞ �
EA

2mH

Z3zðL; tÞ þ
EI

mH

ZzzzðL; tÞ þ
AHCH3

mH

x3. (29)

It is noted that the disturbance observer (28) is based on Lemma 1 applied to the third equation of Eq. (18)
with rðxÞ ¼ kx. Define the disturbance observer error as

De ¼ D� D̂. (30)

Differentiating both sides of Eq. (30) along the solutions of Eq. (28) and the third equation of Eq. (18) gives

_De ¼ �
k

mH

De þ _D. (31)

This equation will be used in the stability analysis of the closed-loop system after the control design is
completed. Now substituting the virtual control a1 given in Eq. (27) into Eq. (26) results in

_W 1 ¼ �
gP0

2mo

Z L

0

Z2z dz�
3gEA

8mo

Z L

0

Z4z dz�
3gEI

2mo

Z L

0

Z2zz dz�
g
2

Z L

0

Z2t dz�
gLP0

2mo

Z2zðL; tÞ

�
gLEA

8mo

Z4zðL; tÞ þ
gL

2
Z2t ðL; tÞ � ðk1 þ bH Þ ZtðL; tÞ þ

gL

mo

ZzðL; tÞ

� �2

þ ZtðL; tÞ þ
gL

mo

ZzðL; tÞ

� �
ðDe þ CH3AHx3eÞ þ

Z L

0

ðZt þ gzZzÞf ð�Þ dz. (32)

On the other hand, substituting the virtual control a1 into the third equation of Eq. (18) gives

_x2 ¼ �
bH

mH

x2 �
P0

mH

ZzðL; tÞ �
EA

2mH

Z3zðL; tÞ þ
EI

mH

ZzzzðL; tÞ þ �
mHgL

mo

ZztðL; tÞ

�

�k1 ZtðL; tÞ þ
gL

mo

ZzðL; tÞ

� �
� bH

gL

mo

ZzðL; tÞ þ D̂
�
þ

AHCH3

mH

x3e �
1

mH

De. (33)

3.2. Step 2

Our goal at this step is to regulate x3e to a small neighborhood of the origin by considering the fourth
equation of the entire system (18) where for simplicity of the design process, we consider g3ðx3;x4Þ as a control
instead of x4. As such, we define

x4e ¼ g3ðx3;x4Þ � a2, (34)

where a2 is a virtual control of g3ðx3;x4Þ. To design a2, we first calculate _x3e. Differentiating both sides of
Eq. (20) along the solutions of Eq. (27), Eq. (34) and the third equation of Eq. (18) gives

_x3e ¼ �
4bHeAH

V HCH3
x2 �

4bHeCHT

V H

x3 þ
4bHeCHDCH4W H

V H

ffiffiffiffiffiffiffiffiffi
CH3

p ðx4e þ a2Þ þ
mHgL

mo

ZzttðL; tÞ

þ
ðk1 þ bH ÞgL

mo

ZztðL; tÞ �
k

mH

x�
k2

mH

x2 þ k1F�
k þ k1

mH

Dðt; ZtðL; tÞÞ. (35)
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To design the virtual control a2, we consider the following Lyapunov function candidate:

W 2 ¼W 1 þ
1
2x

2
3e (36)

whose derivative along the solutions of Eqs. (32) and (35) is

_W 2 ¼ �
gP0

2mo

Z L

0

Z2z dz�
3gEA

8mo

Z L

0

Z4z dz�
3gEI

2mo

Z L

0

Z2zz dz�
g
2

Z L

0

Z2t dz�
gLP0

2mo

Z2zðL; tÞ

�
gLEA

8mo

Z4zðL; tÞ þ
gL

2
Z2t ðL; tÞ � ðk1 þ bH Þ ZtðL; tÞ þ

gL

mo

ZzðL; tÞ

� �2

þ x3e ZtðL; tÞ þ
gL

mo

ZzðL; tÞ

� �
CH3AH �

4bHeAH

V HCH3
x2 �

4bHeCHT

V H

x3 þ
4bHeCHDCH4W H

V H

ffiffiffiffiffiffiffiffiffi
CH3

p a2

�

þ
mHgL

mo

ZzttðL; tÞ þ
ðk1 þ bH ÞgL

mo

ZztðL; tÞ �
k

mH

x�
k2

mH

x2 þ k1F�
k þ k1

mH

Dðt; ZtðL; tÞÞ

�

þ ZtðL; tÞ þ
gL

mo

ZzðL; tÞ

� �
De þ

4bHeCHDCH4W H

V H

ffiffiffiffiffiffiffiffiffi
CH3

p x3ex4e þ

Z L

0

ðZt þ gzZzÞf ð�Þ dz. (37)

Eq. (37) suggests that we choose the virtual control a2 as follows:

a2 ¼
VH

ffiffiffiffiffiffiffiffiffi
CH3

p

4bHeCHDCH4W H

�k2x3e � ZtðL; tÞ þ
gL

mo

ZzðL; tÞ

� �
CH3AH þ

4bHeAH

V HCH3
x2 þ

4bHeCHT

V H

a1

�

�
mHgL

mo

ZzttðL; tÞ �
ðk1 þ bH ÞgL

mo

ZztðL; tÞ þ
k

mH

xþ
k2

mH

x2 � k1Fþ
k þ k1

mH

D̂
�
, (38)

where k2 is a positive constant, and we did not cancel the useful damping term �ð4bHeCHT=V H Þx3e. It is seen
from Eq. (38) that a2 is a smooth function of x2, x3, ZzðL; tÞ, ZztðL; tÞ, ZzttðL; tÞ, ZzzzðL; tÞ and x. Now
substituting Eq. (38) into Eq. (37) gives

_W 2 ¼ �
gP0

2mo

Z L

0

Z2z dz�
3gEA

8mo

Z L

0

Z4z dz�
3gEI

2mo

Z L

0

Z2zz dz�
g
2

Z L

0

Z2t dz�
gLP0

2mo

Z2zðL; tÞ

�
gLEA

8mo

Z4zðL; tÞ þ
gL

2
Z2t ðL; tÞ � ðk1 þ bH Þ ZtðL; tÞ þ

gL

mo

ZzðL; tÞ

� �2

� k2 þ
4bHeCHT

V H

� �
x2
3e

�
k þ k1

mH

x3eDe þ ZtðL; tÞ þ
gL

mo

ZzðL; tÞ

� �
De þ

4bHeCHDCH4W H

VH

ffiffiffiffiffiffiffiffiffi
CH3

p x3ex4e þ

Z L

0

ðZt þ gzZzÞf ð�Þdz.

(39)

Moreover, substituting Eq. (38) into Eq. (35) results in

_x3e ¼ � k2 þ
4bHeCHT

VH

� �
x3e � ZtðL; tÞ þ

gL

mo

ZzðL; tÞ

� �
CH3AH

þ
4bHeCHDCH4W H

V H

ffiffiffiffiffiffiffiffiffi
CH3

p x4e �
k þ k1

mH

De. (40)
3.3. Step 3

This is the final step. The actual control input iH will be designed to regulate x4e to a small neighborhood of
the origin. Since a2 is a smooth function of x2, x3, ZzðL; tÞ, ZztðL; tÞ, ZzttðL; tÞ, ZzzzðL; tÞ and x, differentiating
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both sides of Eq. (34) along the solutions of Eq. (38) and the entire system (18) gives

_x4e ¼
qg3ðx3;x4Þ

qx3
�

qa2
qx3

� �
�
4bHeAH

V HCH3
x2 �

4bHeCHT

V H

x3 þ
4bHeCHDCH4W H

V H

ffiffiffiffiffiffiffiffiffi
CH3

p g3ðx3;x4Þ

� �

þ
qg3ðx3;x4Þ

qx4
�

1

tHv

x4 þ
kHv

tHvCH4
iH

� �
�

qa2
qx2

F�
1

mH

Dðt; ZtðL; tÞÞ

� �
�

qa2
qZzðL; tÞ

ZztðL; tÞ

�
qa2

qZztðL; tÞ
ZzttðL; tÞ �

qa2
qZzttðL; tÞ

ZztttðL; tÞ �
qa2

qZzzzðL; tÞ
ZzzztðL; tÞ

�
qa2
qx
�

k

mH

x� k Fþ
k

mH

x2

� �� �
. (41)

To design the actual control iH , we consider the following Lyapunov function candidate:

W 3 ¼W 2 þ
1
2
x2
4e (42)

whose derivative along the solutions of Eqs. (41) and (39) is

_W 3 ¼ �
gP0

2mo

Z L

0

Z2z dz�
3gEA

8mo

Z L

0

Z4z dz�
3gEI

2mo

Z L

0

Z2zz dz�
g
2

Z L

0

Z2t dz�
gLP0

2mo

Z2zðL; tÞ

�
gLEA

8mo

Z4zðL; tÞ þ
gL

2
Z2t ðL; tÞ � ðk1 þ bH Þ ZtðL; tÞ þ

gL

mo

ZzðL; tÞ

� �2

� k2 þ
4bHeCHT

VH

� �
x2
3e

þ x4e

4bHeCHDCH4W H

V H

ffiffiffiffiffiffiffiffiffi
CH3

p x3e þ
qg3ðx3;x4Þ

qx3
�

qa2
qx3

� �
�
4bHeAH

V HCH3
x2 �

4bHeCHT

VH

x3

��

þ
4bHeCHDCH4W H

V H

ffiffiffiffiffiffiffiffiffi
CH3

p g3ðx3; x4Þ

�
þ

qg3ðx3;x4Þ

qx4
�

1

tHv

x4 þ
kHv

tHvCH4
iH

� �

�
qa2
qx2

F�
1

mH

Dðt; ZtðL; tÞÞ

� �
�

qa2
qZzðL; tÞ

ZztðL; tÞ �
qa2

qZztðL; tÞ
ZzttðL; tÞ

�
qa2

qZzttðL; tÞ
ZztttðL; tÞ �

qa2
qZzzzðL; tÞ

ZzzztðL; tÞ �
qa2
qx
�

k

mH

x� k Fþ
k

mH

x2

� �� ��

�
k þ k1

mH

x3eDe þ ZtðL; tÞ þ
gL

mo

ZzðL; tÞ

� �
De þ

Z L

0

ðZt þ gzZzÞf ð�Þ dz. (43)

Eq. (43) suggests that we choose the actual control iH as follows:

iH ¼
tHvCH4

kHv

qg3ðx3; x4Þ

qx4

�k3x4e �
4bHeCHDCH4W H

V H

ffiffiffiffiffiffiffiffiffi
CH3

p x3e �
qg3ðx3;x4Þ

qx3
�

qa2
qx3

� �
�
4bHeAH

VHCH3
x2

��

�
4bHeCHT

V H

x3 þ
4bHeCHDCH4W H

V H

ffiffiffiffiffiffiffiffiffi
CH3

p g3ðx3;x4Þ

�
þ

qg3ðx3; x4Þ

qx4

1

tHv

x4 þ
qa2
qx2

F�
1

mH

D̂
� �

þ
qa2

qZzðL; tÞ
ZztðL; tÞ þ

qa2
qZztðL; tÞ

ZzttðL; tÞ þ
qa2

qZzttðL; tÞ
ZztttðL; tÞ þ

qa2
qZzzzðL; tÞ

ZzzztðL; tÞ

þ
qa2
qx
�

k

mH

x� k Fþ
k

mH

x2

� �� ��
, (44)

where k3 is a positive constant. It is seen from Eq. (44) that the signals ZðL; tÞ, ZzðL; tÞ, ZztðL; tÞ, ZzttðL; tÞ,
ZztttðL; tÞ, ZzzzðL; tÞ, ZzzztðL; tÞ, x3 and x4, which are measurable or numerically calculated from measurable
signals, are required for implementation. It is noted that differentiating twice and three times the slope ZzðL; tÞ
with respect to time to get ZzttðL; tÞ and ZztttðL; tÞ, respectively, is undesirable in practice due to noise
amplification. Therefore, it is suggested to use the boundary condition, the second equation of Eq. (13) to
estimate ZzttðL; tÞ and ZztttðL; tÞ. We define an estimate of ZttðL; tÞ by ẐttðL; tÞ when the disturbance Dðt; ZtðL; tÞÞ
in the second equation of Eq. (13) is replaced by its estimate D̂ given in Eq. (28). With this notation and the
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second equation of Eq. (13), we have

ẐttðL; tÞ ¼ �
bH

mH

ZtðL; tÞ �
P0

mH

ZzðL; tÞ �
EA

2mH

Z3zðL; tÞ þ
EI

mH

ZzzzðL; tÞ þ
AH

mH

PH �
1

mH

D̂. (45)

Now, numerical differentiation of both sides of Eq. (45) with respect to the spatial variable z gives an estimate
ẐzttðL; tÞ of ZzttðL; tÞ. On the other hand, numerical differentiation of both sides of Eq. (45) with respect to time
t, then with respect to the spatial variable z, gives an estimate ẐztttðL; tÞ of ZztttðL; tÞ. The estimates ẐzttðL; tÞ and
ẐztttðL; tÞ can be used in the control expression (44) instead of ZzttðL; tÞ and ZztttðL; tÞ, respectively.

Substituting Eq. (44) into Eq. (43) results in

_W 3 ¼ �
gP0

2mo

Z L

0

Z2z dz�
3gEA

8mo

Z L

0

Z4z dz�
3gEI

2mo

Z L

0

Z2zz dz�
g
2

Z L

0

Z2t dz�
gLP0

2mo

Z2zðL; tÞ

�
gLEA

8mo

Z4zðL; tÞ þ
gL

2
Z2t ðL; tÞ � ðk1 þ bH Þ ZtðL; tÞ þ

gL

mo

ZzðL; tÞ

� �2

� k2 þ
4bHeCHT

V H

� �
x2
3e

� k3x
2
4e þ

qa2
qx2

1

mH

x4eDe �
k þ k1

mH

x3eDe þ ZtðL; tÞ þ
gL

mo

ZzðL; tÞ

� �
De þ

Z L

0

ðZt þ gzZzÞf ð�Þdz. (46)

Before going further, let us consider the following:

QW31 ¼ �
gLP0

2mo

Z2zðL; tÞ þ
gL

2
Z2t ðL; tÞ � ðk1 þ bH Þ ZtðL; tÞ þ

gL

mo

ZzðL; tÞ

� �2

,

QW32 ¼

Z L

0

ðZt þ gzZzÞf ð�Þ dz. (47)

Using Eq. (6), a simple calculation shows that

QW31p� ðk1 þ bH � gLÞ ZtðL; tÞ þ
gL

mo

ZzðL; tÞ

� �2

�
gL

mo

P0

2
�
ðgLÞ2

mo

� �
Z2zðL; tÞ,

QW32p� OD �
gLOD

4�1
� �

� �Z L

0

Z2t dzþ gLOD�1 þ gL�ð Þ

Z L

0

Z2z dzþ
1þ gL

4�

Z L

0

f 2
L dz, (48)

where � and �1 are arbitrarily positive constants. Now substituting Eq. (48) into Eq. (46) gives

_W 3p�
gP0

2mo

� gLOD�1 � gL�

� �Z L

0

Z2z dz�
3gEA

8mo

Z L

0

Z4z dz�
3gEI

2mo

Z L

0

Z2zz dz

�
g
2
þ OD �

gLOD

4�1
� �

� �Z L

0

Z2t dz�
gL

mo

P0

2
�
ðgLÞ2

mo

� �
Z2zðL; tÞ �

gLEA

8mo

Z4zðL; tÞ

� ðk1 þ bH � gLÞ ZtðL; tÞ þ
gL

mo

ZzðL; tÞ

� �2

� k2 þ
4bHeCHT

VH

� �
x2
3e � k3x2

4e

þ
qa2
qx2

1

mH

x4eDe �
k þ k1

mH

x3eDe þ ZtðL; tÞ þ
gL

mo

ZzðL; tÞ

� �
De þ

1þ gL

4�

Z L

0

f 2
L dz. (49)

Therefore, it is sufficient to choose the constant k1 and g such that

gP0

2mo

� gLOD�1 � gL� ¼ c3,

g
2
þ OD �

gLOD

4�1
� � ¼ c4,

k1 þ bH � gL ¼ c5,
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P0

2
�
ðgLÞ2

mo

¼ c6, (50)

where c3, c4, c5, and c6 are strictly positive constants. It is recalled that the constant g also needs to satisfy
condition (24). A straightforward verification shows that there always exist design constants g and k1

simultaneously satisfying conditions (24) and (50). On the other hand, substituting Eq. (44) into Eq. (41) gives

_x4e ¼ �k3x4e �
4bHeCHDCH4W H

VH

ffiffiffiffiffiffiffiffiffi
CH3

p x3e þ
qa2
qx2

1

mH

De. (51)

The control design has been completed. For convenience of stability analysis later, we rewrite the closed-loop
system consisting of the first and the last two equations of Eqs. (18), (33), (40), (51), and (31) as follows:

moZttðz; tÞ ¼ �EIZzzzzðz; tÞ þ P0Zzzðz; tÞ þ
3EA

2
Z2zðz; tÞZzzðz; tÞ þ f ðz; t; uðz; tÞ; Ztðz; tÞÞ,

_x1 ¼ x2,

_x2 ¼ �
bH

mH

x2 �
P0

mH

ZzðL; tÞ �
EA

2mH

Z3zðL; tÞ þ
EI

mH

ZzzzðL; tÞ þ �
mHgL

mo

ZztðL; tÞ

�

�k1 ZtðL; tÞ þ
gL

mo

ZzðL; tÞ

� �
� bH

gL

mo

ZzðL; tÞ þ D̂
�
þ

AHCH3

mH

x3e �
1

mH

De,

_x3e ¼ � k2 þ
4bHeCHT

VH

� �
x3e � ZtðL; tÞ þ

gL

mo

ZzðL; tÞ

� �
CH3AH

þ
4bHeCHDCH4W H

V H

ffiffiffiffiffiffiffiffiffi
CH3

p x4e �
k þ k1

mH

De,

_x4e ¼ �k3x4e �
4bHeCHDCH4W H

VH

ffiffiffiffiffiffiffiffiffi
CH3

p x3e þ
qa2
qx2

1

mH

De,

Zzzð0; tÞ ¼ ZzzðL; tÞ ¼ 0,

Zð0; tÞ ¼ 0,

_De ¼ �
k

mH

De þ _D. (52)

We are ready to state the main result of our paper in the following theorem.

Theorem 1. Under Assumption 1, the control input iH given in Eq. (44) solves the control objective provided that

the initial tension P0 is strictly positive, and the design constants g and k1 are chosen such that conditions (24) and

(50) hold. In particular, the solutions of the closed-loop system (52) exist and are unique. Moreover, when the

external distributed disturbance f L is zero, and the disturbance Dðt; ZtðL; tÞÞ is constant, all the terms jZðz; tÞj,R L

0 Z2zðz; tÞdz,
R L

0 Z2t ðz; tÞdz, and
R L

0 Z2zzðz; tÞdz exponentially converge to zero, and when the external distributed

disturbance f L is different from zero but bounded, and the disturbance Dðt; ZtðL; tÞÞ is time varying with bounded

derivatives, all the terms jZðz; tÞj,
R L

0 Z2zðz; tÞdz,
R L

0 Z2t ðz; tÞdz and
R L

0 Z2zzðz; tÞdz exponentially converge to some

small positive constants.

Proof. See Appendix B. &

4. Simulations

To illustrate the effectiveness of the controller proposed in the previous section, we carry out some
simulations in this section. The parameters of the hydraulic system are taken based on [23] as follows:
mH ¼ 1000 kg, AH ¼ 0:65m2, bH ¼ 40N=ðm=sÞ, 4bHe=VH ¼ 4:53� 108 N=m5, CHD ¼ 2:21� 10�14 m5=Ns,
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Fig. 4. Simulation result without the proposed controller: transverse displacement Zðz; tÞ.

Fig. 5. Simulation result with the proposed controller: transverse displacement Zðz; tÞ.
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CHDW H=
ffiffiffi
r
p
¼ 3:42� 10�5 m3

ffiffiffiffiffi
N
p

s, PHS ¼ 10; 342; 500Pa, kHv ¼ 0:0324, tHv ¼ 0:00636. The scale factors
are taken as CH3 ¼ 6� 105, CH4 ¼ 5� 10�7 to scale PHS down and tHv up as discussed in Section 2.2.2. The
riser parameters assumed are: length L ¼ 1000m, diameter D ¼ 0:14m, density r ¼ 8200 kg=m3, Young’s
modulus E ¼ 2� 108 kg=m2, initial tension P0 ¼ 60� 103 N. The parameters of the distributed damping and
external forces are taken as follows: c ¼ 120N s=m, rw ¼ 1024 kg=m3, and CD ¼ 1:2. Using the linear wave
theory, the horizontal water particle velocity and acceleration are expressed respectively as [20]

uðz; tÞ ¼
XNw

i¼1

Awiwwi

coshðkwizÞ

sinhðkwiLÞ
sinðwwitþ jwiÞ

� �
, (53)

where the amplitude Awi, wave number kwi, frequency wwi, phase jwi of the wave ith are given by

wwi ¼ wm þ
wm � wM

Nw

i; Swi ¼
1:25

4

w4
o

w5
wi

H2
swe
�1:25ðwo=wwiÞ

4

,

Awi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Swi

wmi � wMi

Nw

r
; 9:8kwi tanhðkwiLÞ ¼ w2

wi; jwi ¼ 2p randðÞ. (54)

In Eq. (54), minimum and maximum wave frequencies are wm ¼ 0:2 rand=s, wM ¼ 2:5 rand=s; the two-
parameter Bretschneider spectrum Swi is used with the significant wave height Hsw ¼ 4m; the modal frequency
is wo ¼ 2p=Tw with the period Tw ¼ 7:8; Nw ¼ 10; and rand() is a random number between 0 and 1. The
observer and control gains are chosen as: k ¼ 2, g ¼ 10�3, k1 ¼ k2 ¼ k3 ¼ 2. It is directly verified that
conditions (24) and (50) are well satisfied with � ¼ �1 ¼ 10�3. We assume that the disturbance
Dðt; ZtðL; tÞÞ ¼ 0:5mH sinð0:5tþ 2p randðÞÞ. The initial conditions are taken as t0 ¼ 0, Zðz; t0Þ ¼ 4zðz� LÞ=L2,
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Fig. 6. Simulation result with the proposed controller: (A) transverse displacement at the top end ZðL; tÞ; (B) virtual error x3eðtÞ; (C) virtual

error x4eðtÞ; (D) control input iH ðtÞ.
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Ztðz; t0Þ ¼ 0 and xðt0Þ ¼ 0. We use a finite difference scheme [24] to approximate the uncontrolled/controlled
(continuous) system for the simulation purposes.

We run simulations without the proposed boundary controller, i.e. we set all the observer and control gains
to zero (k ¼ k1 ¼ k2 ¼ k3 ¼ 0), and with the proposed boundary controller, i.e. k ¼ 2, g ¼ 10�3,
k1 ¼ k2 ¼ k3 ¼ 2. The length of simulation time for both cases is 300 s. The transverse displacement Zðz; tÞ
for the uncontrolled and controlled cases are displayed in Figs. 4 and 5, respectively. It is seen from these
figures that the proposed boundary controller can reduce deflections of the riser transverse motion
significantly, i.e. the displacement magnitudes are significantly reduced. This illustrates the effectiveness of the
proposed boundary controller in the sense that it is able to drive the riser to the small neighborhood of its
equilibrium position (Fig. 6).
5. Conclusions

Based on the energy approach, the equations of motion of a marine riser-hydraulic system were presented.
These equations were then used for the design of the boundary controller at the top end of the riser based on
Lyapunov’s direct method. The proposed controller robustly stabilized the riser at its equilibrium vertical
position. Proof of existence and uniqueness of the solutions of the closed-loop system was given. Future work
is to carry out experiments to validate the proposed controller.
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Appendix A. Useful lemmas

This appendix provides two useful lemmas that will be used in the proof of Theorem 1.
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Lemma 3. For any y ¼ ½y1; . . . ; yi; . . . ; yn�
T with yi 2 C1½0;L�; i ¼ 1; . . . ; n, the following inequalities hold:Z L

0

yðsÞ:yðsÞdsp2Lyð0Þ:yð0Þ þ 4L2

Z L

0

ysðsÞ:ysðsÞds, (55)

Z L

0

yðsÞ:yðsÞdsp2LyðLÞ:yðLÞ þ 4L2

Z L

0

ysðsÞ:ysðsÞds. (56)

Proof. We prove Eq. (56). The proof of Eq. (55) is similar by using a change of coordinate x ¼ L� s. Using
integration by parts, we haveZ L

0

yðsÞ:yðsÞds ¼ yðsÞ:yðsÞsjL0 � 2

Z L

0

syðsÞ:ysðsÞds

pLyðLÞ:yðLÞ þ
1

2

Z L

0

yðsÞ:yðsÞdsþ 2

Z L

0

s2ysðsÞ:ysðsÞds

pLyðLÞ:yðLÞ þ
1

2

Z L

0

yðsÞ:yðsÞdsþ 2L2

Z L

0

ysðsÞ:ysðsÞds (57)

which gives Eq. (56). &

Lemma 4. For any y ¼ ½y1; . . . ; yi; . . . ; yn�
T with yi 2 C1½0;L�; i ¼ 1; . . . ; n, the following inequalities hold:

max
s2½0;L�
ðyðsÞ:yðsÞÞpyð0Þ:yð0Þ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ L

0

yðsÞ:yðsÞds

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ L

0

ysðsÞ:ysðsÞds

s
, (58)

max
s2½0;L�
ðyðsÞ:yðsÞÞpyðLÞ:yðLÞ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ L

0

yðsÞ:yðsÞds

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ L

0

ysðsÞ:ysðsÞds

s
. (59)

Proof. We prove Eq. (58). The proof of Eq. (59) is similar by using a change of coordinate x ¼ L� s. From
fundamental of calculus, we have

yðsÞ:yðsÞ ¼ yð0Þ:yð0Þ þ 2

Z s

0

yðzÞ:yzðzÞdz

pyð0Þ:yð0Þ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ s

0

yðzÞ:yðzÞdz

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ s

0

yzðzÞ:yzðzÞdz

s
, (60)

where we have used the Cauchy–Schwartz inequality. &

Appendix B. Proof of Theorem 1

We first prove existence and uniqueness of the solutions of the closed-loop system (52) then move to prove
convergence of the solutions.

B.1. Existence and uniqueness

Let H2ð0;LÞ be the usual Hilbert space [25]. Our analysis is based on the Sobolev spaces:

VS ¼ Z 2 H2ð0;LÞjZð0; tÞ ¼ 0 (61)

equipped with the norm kZkV S
¼ kZzzk2, and

W S ¼ Z 2 V S \H4ð0;LÞjZzzð0; tÞ ¼ 0; ZzzðL; tÞ ¼ 0 (62)

equipped with the norm kZkW S
¼ kZzzk2 þ kZzzzzk2 where k:kp denotes the Lp norms. From the Poincare

inequality, it follows that k:kVS
and k:kW S

are equivalent to the standard norms of H2ð0;LÞ and H4ð0;LÞ,
respectively. Next, we consider f 2 VS. Now inner producting both sides of the first equation of Eq. (52) by f
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then integrating from 0 to L results in

mo

Z L

0

Zttfdz ¼ �EI

Z L

0

Zzzzzfdzþ P0

Z L

0

Zzzfdzþ
3EA

2

Z L

0

Z2zZzzfdzþ

Z L

0

f ð�Þfdz. (63)

We will use the Galerkin approximation to show that for all f 2 VS there exists Z 2W S such that Eq. (63)
holds. Let fj be a component of a complete orthogonal system of W S for which fZðz; t0Þ; Ztðz; t0Þg
2 Spanff1;f2

g. For each n 2 N, let W Sn ¼ Spanff1;f2; . . . ;fn
g. We search for a function Znðz; tÞ ¼Pn

j¼1 kj
ðtÞfj such that for any f 2W Sn, it satisfies the approximate closed-loop system

mo

Z L

0

Zn
ttfdz ¼ �EI

Z L

0

Zn
zzzzfdzþ P0

Z L

0

Zn
zzfdzþ

3EA

2

Z L

0

Zn2
z Zn

zzfdzþ

Z L

0

f n
ð�Þfdz,

_xn
1 ¼ xn

2,

_xn
2 ¼ �

bH

mH

xn
2 �

P0

mH

Zn
zðL; tÞ �

EA

2mH

Zn3
z ðL; tÞ þ

EI

mH

Zn
zzzðL; tÞ þ �

mHgL

mo

Zn
ztðL; tÞ

�

�k1 Zn
t ðL; tÞ þ

gL

mo

Zn
zðL; tÞ

� �
� bH

gL

mo

Zn
zðL; tÞ þ D̂n

�
þ

AHCH3

mH

xn
3e �

1

mH

Dn
e ,

_xn
3e ¼ � k2 þ

4bHeCHT

V H

� �
xn
3e � Zn

t ðL; tÞ þ
gL

mo

Zn
zðL; tÞ

� �
CH3AH

þ
4bHeCHDCH4W H

VH

ffiffiffiffiffiffiffiffiffi
CH3

p xn
4e �

k þ k1

mH

Dn
e ,

_xn
4e ¼ �k3x

n
4e �

4bHeCHDCH4W H

VH

ffiffiffiffiffiffiffiffiffi
CH3

p xn
3e þ

qa2
qx2

1

mH

Dn
e ,

Zn
zzð0; tÞ ¼ Zn

zzðL; tÞ ¼ 0,

Znð0; tÞ ¼ 0,

_Dn
e ¼ �

k

mH

Dn
e þ

_Dn. (64)

with the initial conditions

Znðz; t0Þ ¼ Zðz; t0Þ; Zn
t ðz; t0Þ ¼ Ztðz; t0Þ (65)

which are possible since ðZðz; t0Þ; Ztðz; t0ÞÞ belongs to W Sn for nX2. Note that Eqs. (64) and (65) are in fact a
system of ordinary differential equations in the variable t, which has a local solution in ½0; tnÞ. After the
estimates below, the approximate solution will be extended to the interval ½0;T � for any given T40.

Estimate I: Upper bound of
R L

0
Zn2

t dzþ
R L

0
Zn2

zz dz. In Eq. (64), we take f ¼ Zn
t and consider the following

Lyapunov function candidate:

W n ¼
mo

2

Z L

0

Zn2
t dzþ

P0

2

Z L

0

Zn2
z dzþ

EA

8

Z L

0

Zn4
z dzþ

EI

2

Z L

0

Zn2
zz dzþ g

Z L

0

zZn
t Z

n
z dz

þ
mH

2
Zn

t ðL; tÞ þ
gL

mo

Zn
zðL; tÞ

� �2

þ
1

2
xn2
3e þ

1

2
xn2
4e þ

l
2
Dn2

e , (66)

where g is the positive constant specified in Section 3, and l is a positive constant to be specified later.
Indeed, as in Section 3, the function W n is proper (i.e. positive definite and radially unbounded).
We use the same technique in Section 3 to calculate the time derivative of the function W n along the solutions
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of Eq. (64):

_W np� c3

Z L

0

Zn2
z dz�

3gEA

8mo

Z L

0

Zn4
z dz�

3gEI

2mo

Z L

0

Zn2
zz dz� c4

Z L

0

Zn2
t dz�

gL

mo

c6Zn2
z ðL; tÞ

�
gLEA

8mo

Zn4
z ðL; tÞ � ðc5 � sÞ Zn

t ðL; tÞ þ
gL

mo

Zn
zðL; tÞ

� �2

� k2 þ
4bHeCHT

V H

� s
� �

xn2
3e � ðk3 � sÞxn2

4e

�
lk

mH

�
1

4s
qan

2

qxn
2

1

mH

� �2

�
1

4s
k þ k1

mH

� �2

�
1

4s
� s

 !
Dn2
e þ

l
4s

_Dn2 þ
1þ gL

4�

Z L

0

f n2
L dz, (67)

where the positive constants c3, c4, and c5 are specified in Section 3, see Eqs. (24) and (50), and s is an
arbitrarily positive constant. From Eqs. (66) and (67), there exist sufficiently small s and sufficiently large l
such that

_W np� cnW n þQn, (68)

where cn is a strictly positive constant, and Qn is the maximum value of ðl=4sÞ _Dn2 þ ðð1þ gLÞ=4�Þ
R L

0 f n2
L dz,

which is bounded by some nonnegative constant. The differential inequality (68) implies that
W nðtÞpðW nðt0Þ � ðQn=cnÞÞe

ðt�t0Þ þ ðQn=cnÞ, which in turn means there exists a nonnegative constant M1

such that Z L

0

Zn2
t dzþ

Z L

0

Zn2
z dzþ

Z L

0

Zn2
zz dzpM1 8t 2 ½0;T �; n 2 N. (69)

Estimate II: Upper bound of Zttðz; t0Þ in L2-norm. In the first equation of Eq. (64), taking f ¼ Zn
ttðz; t0Þ and

t ¼ t0 gives

mo

Z L

0

Zn2
tt ðz; t0Þdz ¼ � EI

Z L

0

Zn
zzzzðz; t0ÞZ

n
ttðz; t0Þdzþ P0

Z L

0

Zn
zzðz; t0ÞZ

n
ttðz; t0Þdz

þ
3EA

2

Z L

0

Zn2
z ðz; t0ÞZ

n
zzðz; t0ÞZ

n
ttðz; t0Þdzþ

Z L

0

f n
ð�Þjt¼t0Z

n
ttðz; t0Þdz. (70)

A simple calculation shows that

ðmo � 4m1Þ
Z L

0

Zn2
tt ðz; t0Þdzp

ðEIÞ2

4m1

Z L

0

Zn2
zzzzðz; t0Þdzþ

P2
0

4m1

Z L

0

Zn2
zz ðz; t0Þdz

þ
3EA

2

� �2
1

4m1

Z L

0

Zn4
z ðz; t0ÞZ

n2
zz ðz; t0Þdzþ

1

4m1

Z L

0

f n2
ð�Þ

�����
t¼t0

dz, (71)

where m1 is an arbitrarily positive constant. Since the initial values Zðz; t0Þ and Ztðz; t0Þ are sufficiently smooth,
and we have already proved that

R L

0 Zn2
t ðz; tÞdz,

R L

0 Zn2
z ðz; tÞdz,

R L

0 Zn2
zz ðz; tÞdz are bounded, see Estimate I

section, from Eq. (71) picking m1 strictly less than mo=4 shows that there exists a nonnegative constant M2

such that Z L

0

Zn2
tt ðz; t0ÞdzpM2; 8t 2 ½0;T �; n 2 N. (72)

Estimate III: Upper bound of Zttðz; tÞ and Zzztðz; tÞ in L2-norm. To estimate the upper bound of these terms, we
use a difference approach. Let us fix t and x such that xoT � t. Now taking the difference of the first equation
of Eq. (64) with t ¼ tþ x and t ¼ t, and then letting f ¼ Zn

t ðtþ xÞ � Zn
t ðtÞ result in

mo

2

Z L

0

d

dt
ðZn

t ðz; tþ xÞ � Zn
t ðz; tÞÞ

2 dzþ
EI

2

Z L

0

d

dt
ðZn

zzðz; tþ xÞ � Zn
zzðz; tÞÞ

2 dzþ O1 þ O2 ¼ 0, (73)
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where

O1 ¼
P0

2

Z L

0

d

dt
ðZn

zðz; tþ xÞ � Zn
zðz; tÞÞ

2 dz

þ
EA

4

Z L

0

ðZn2
z ðz; tþ xÞ þ Zzðz; tþ xÞZn

zðz; tÞ þ Zn2
z ðz; tÞ

d

dt
ðZn

zðz; tþ xÞ � Zn
zðz; tÞÞ

2 dz,

O2 ¼ ðmH ðZn
ttðL; tþ xÞ � Zn

ttðL; tÞÞ þ bH ðZn
t ðL; tþ xÞ � Zn

t ðL; tÞÞ � AH ðPH ðtþ xÞ � PH ðtÞÞÞ

�ðZn
t ðL; tþ xÞ � ZtðL; tÞÞ �

Z L

0

ðf n
ð�Þjt:¼tþx � f n

ð�Þjt:¼tÞðZ
n
t ðL; tþ xÞ � Zn

t ðL; tÞÞ. (74)

Since the initial values Zðz; t0Þ and Ztðz; t0Þ are sufficiently smooth, Zð0; tÞ ¼ 0, Zzzð0; tÞ ¼ 0, ZzzðL; tÞ ¼ 0 for all
Z 2W S and all the terms

R L

0 Zn2
t dz,

R L

0 Zn2
z ðz; tÞdz,

R L

0 Zn2
zz ðz; tÞdz are bounded, see Estimate I section, using the

Mean Value Theorem and Lemmas 3 and 4 shows that there exist nonnegative constants M31 and M32

such that

jO1j þ jO2jpM31

Z L

0

ðZn
t ðz; tþ xÞ � Zn

t ðz; tÞÞ
2 dzþM32

Z L

0

Zn
zzðz; tþ xÞ � Zn

zzðz; tÞ
	 
2

dz. (75)

Using Eq. (75), we can write Eq. (73) as

dFn

dt
ðt; xÞpM33Fnðt; xÞ ) Fðt; xÞpFðt0; xÞeM33ðt�t0Þ, (76)

where M33 is a nonnegative constant, and

Fnðt; xÞ ¼ mo

Z L

0

ðZn
t ðz; tþ xÞ � Zn

t ðz; tÞÞ
2 dzþ EI

Z L

0

ðZn
zzðz; tþ xÞ � Zn

zzðz; tÞÞ
2 dz. (77)

Dividing both sides of the last inequality in Eq. (76) by x2 then taking the limit x! 0 gives

mo

Z L

0

Zn2
tt ðz; tÞdzþ EI

Z L

0

Zn2
zztðz; tÞdzp mo

Z L

0

Zn2
tt ðz; t0Þdzþ EI

Z L

0

Zn2
zztðz; t0Þdz

� �
eM33ðt�t0Þ (78)

for all 0pt0ptpT . Now from the estimates given in Eqs. (69) and (71), we can deduce from Eq. (78) that
there exists M3X0 depending on T such that

mo

Z L

0

Zn2
tt ðz; tÞdzþ EI

Z L

0

Zn2
zztðz; tÞdzpM3. (79)

From the estimates given in Eqs. (69), (72) and (79), we can use the Lions–Aubin theorem to get the necessary
compactness to pass the nonlinear system (64) to the limit. Then it is a matter of routine to conclude the
existence of global solutions in ½0;T �.

Uniqueness: Let u and v be two solutions of the closed-loop system (52). Letting $ ¼ u� v, we have
$ðz; t0Þ ¼ 0 and $tðz; t0Þ ¼ 0 and from Eq. (63) we have

mo

Z L

0

$ttfdz ¼ � EI

Z L

0

$zzzzfdzþ P0

Z L

0

$zzfdzþ
3EA

2

Z L

0

ðu2
zuzz � v2zvzzÞfdz

þ

Z L

0

ðf ð�ÞjZ¼u � f ð�ÞjZ¼vÞfdz. (80)

By taking f ¼ $tðz; tÞ in Eq. (80) and using the Mean Value Theorem and passing of the limit of all the
estimates given in Eqs. (69), (71) and (79) previously, we readily have

d

dt

Z L

0

$2
t dzþ

Z L

0

$2
ss

� �
pM4

Z L

0

$2
t dzþ

Z L

0

$2
ss dz

� �
, (81)

where M4 is a positive constant. Since $ðz; t0Þ ¼ 0 and $tðz; t0Þ ¼ 0, using Gronwall’s Lemma shows that
$ ¼ 0, i.e. u ¼ v for all tXt0X0 and z 2 ½0;L�.
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B.2. Proof of convergence

First, we consider the case where f L ¼ 0 and Dðt; Ztðz; tÞ is constant, i.e. _D ¼ 0 then move to the case where
f La0 and _Da0.

(1) Case f L ¼ 0 and _D ¼ 0: In this case, we consider the following Lyapunov function candidate:

U1 ¼W 3 þ
l
2
D2
e , (82)

where l is a positive constant to be specified. Differentiating both sides of Eq. (82) along the solutions of Eq.
(49) and the last equation of Eq. (52) results in

_U1p� c3

Z L

0

Z2z dz�
3gEA

8mo

Z L

0

Z4z dz�
3gEI

2mo

Z L

0

Z2zz dz� c4

Z L

0

Z2t dz�
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mo

c6Z2zðL; tÞ

�
gLEA

8mo

Z4zðL; tÞ � ðc5 � sÞ ZtðL; tÞ þ
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mo
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� �2

� k2 þ
4bHeCHT

VH

� s
� �

x2
3e � ðk3 � sÞx2

4e

�
lk
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�
1

4s
qa2
qx2

1

mH

� �2

�
1

4s
k þ k1

mH

� �2

�
1

4s

 !
D2
e , (83)

where the positive constants c3, c4, and c5 are specified in Section 3 (see Eqs. (24) and (50)), and s is an
arbitrarily positive constant, and we have used f L ¼ 0 and _D ¼ 0 in this case. Since c5 and k are strictly
positive constants, and qa2=qx2 is equal to a constant, we can always pick sufficiently small s and sufficiently
large l such that c5 � s and

lk

mH

�
1

4s
qa2
qx2

1

mH

� �2

�
1

4s
k þ k1

mH

� �2

�
1

4s

 !

are strictly positive constants. Using Eq. (23), it is straightforwardly deduced that

_U1p� kU1, (84)

where

k ¼

min c3;
3gEA

8mo

;
3gEI

2mo

; c4; c5 � s;
lk

mH

�
1

4s
qa2
qx2

1

mH

� �2

�
1

4s
k þ k1

mH

� �2

�
1

4s

 ! !

max
mo þ gL

2
;
P0 þ gL

2
;
EA

8
;
EI

2
;
mH

2
; l

� � . (85)

Therefore

U1ðtÞpU1ðt0Þe
�kðt�t0Þ; 8tXt0X0 (86)

which combines with the low and upper bounds of W 1ðtÞ given in Eq. (23), we have

mo � gL
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#
e�kðt�t0Þ; 8tXt0X0. (87)

Since the initial values of Ztðz; t0Þ; Zzðz; t0Þ; Zzzðz; t0Þ for all z 2 ½0;L�, x3ðt0Þ and x4ðt0Þ are bounded and
sufficiently smooth, all the terms in side the square bracket in the right-hand side of Eq. (87) are bounded.
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Hence, the right-hand side of Eq. (87) is bounded and converges exponentially to zero. Boundedness and
exponential convergence of the right-hand side of Eq. (87) to zero imply that the left-hand side of Eq. (87)
must be bounded and exponentially converges to zero. This in turn implies that all the terms

R L

0
Z2t ðz; tÞdz,R L

0
Z2zzðz; tÞdz,

R L

0
Z2zðz; tÞdz, x3eðtÞ, x4eðtÞ, and DeðtÞ are bounded and exponentially converge to zero. Next, we

use Lemmas 3 and 4 to show that
R L

0 Z2ðz; tÞdz and jZðz; tÞj are bounded and exponentially converge to zero.
An application of Lemma 3 givesZ L

0

Z2ðz; tÞdzp2Z2ð0; tÞ þ 4L2

Z L

0

Z2zðz; tÞdz. (88)

Since Zð0; tÞ ¼ 0 and we have already proved that
R L

0 Z2zðz; tÞdz is bounded and exponentially converges to zero,
Eq. (88) implies that

R L

0 Z2ðz; tÞdz must be bounded and exponentially converges to zero. On the other hand,
an application of Lemma 4 shows that

max
s2½0;L�
ðZ2ðz; tÞÞpZ2ð0; tÞ þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ L

0

Z2ðz; tÞdz

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ L

0

Z2zðz; tÞdz

s
. (89)

Since Zð0; tÞ ¼ 0 and we have already proved that
R L

0 Z2zðz; tÞdz and
R L

0 Z2ðz; tÞdz are bounded and
exponentially converge to zero, Eq. (89) implies that jZðz; tÞj must be bounded and exponentially converges
to zero.

(2) Case f La0 and _Da0: Similarly to the previous case, we consider the following Lyapunov function
candidate:

U2 ¼W 3 þ
l
2
D2
e , (90)

where l is a positive constant to be specified. Differentiating both sides of Eq. (82) along the solutions of Eq.
(49) and the last equation of Eq. (52) results in
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f 2
L dz, (91)

where all the positive constants c3, c4, c5, s, and l are specified in the previous case. Processing the same as the
previous case, we have

_U2p� kU2 þ CU2, (92)

where k is given in Eq. (85), and CU2 ¼ maxjl=4s _D2 þ ð1þ gLÞ=4�
R L

0 f 2
L dzj. The differential inequality (92)

implies that

U2ðtÞp U2ðt0Þ �
CU2

k
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CU2

k
; 8tXt0X0. (93)

Hence U2ðtÞ exponentially converges to the nonnegative constant CU2=k. This in turn implies that all the termsR L

0 Z2t ðz; tÞdz,
R L

0 Z2zzðz; tÞdz,
R L

0 Z2zðz; tÞdz, x3eðtÞ, x4eðtÞ and DeðtÞ exponentially converge to some nonnegative
constant less than

CU2

kmin
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2
;
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2
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� �

due to Eq. (23). Proof of boundedness (not exponential convergence to zero) of
R L

0
Z2ðz; tÞdz and jZðz; tÞj can be

carried out in the same lines as in the previous case.
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