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Abstract

This paper presents a boundary controller to reduce transverse motion of flexible marine risers driven by a hydraulic
system at the top end of the risers under environmental disturbances induced by waves, wind, and ocean currents. The
boundary controller is designed based on Lyapunov’s direct method and the backstepping technique. Proof of existence
and uniqueness of the solutions of the closed-loop control system is carried out by using the Galerkin approximation
method. Simulation results illustrate the effectiveness of the proposed boundary controller.
© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

As exploration and production for natural resources enter deeper ocean waters, control of the dynamics of
flexible marine risers connecting a oil and/or gas offshore platform with a well at the sea bed, becomes a vital
task for both ocean and control engineers. In general, a riser is subject to nonlinear deformation dependent on
hydrodynamic loads induced by waves, ocean currents, tension exerted at the top, distributed/concentrated
buoyancy from attached modules, its own weight, inertia forces, and distributed/concentrated torsional
couples. Since the riser dynamics is essentially a distributed system and its motion is governed by a set of
partial differential equations (PDE) in both time and space variables, modal control and boundary control
approaches are often used to control the riser in the literature.

In the modal control approach, see Refs. [1,2], distributed systems are controlled by controlling their modes.
As a result, many concepts developed for lumped-parameter systems in Refs. [3,4] can be used for controlling
the distributed ones, since both types can be described in terms of modal coordinates. The main difficulty is
computation of infinite-dimensional gain matrices. This difficulty can be avoided by using the independent
modal-space control method, but this method requires a distributed control force, which can be problematic
to implement. One way to overcome this problem is to construct a truncated model consisting a limited
number of modes. In order to describe the behavior of a flexible system in a satisfactory fashion, it is necessary
to include a large number of modes in the model. Thus, a characteristic of a truncated model is its large
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dimension, i.e. it is impractical to control all modes. Therefore the control of such truncated systems are
restricted to a few critical modes. This also means that other modes are not controlled, and could be unstable.
In fact, truncation of the infinite-dimensional model divides the system into three groups modes: modeled
and controlled, modeled and uncontrolled (residual), and un-modeled. Only the modeled modes are
considered in the control design. In addition, observers are needed to provide the system output for these
modeled modes from the actual distributed system. The use of these observers in combination with truncated
models of distributed system leads to a spill-over phenomenon meaning that the control from actuators not
only affects the controlled modes but also influences the residual and un-modeled modes, which can be
unstable, [5].

The boundary control approach is more practical and efficient than the modal control approach since it
excludes the effect of both observation and control spill-over phenomenon. In the boundary control approach,
distributed actuators and sensors are not required. In addition control design based on the original PDE
model instead of a truncated model, improves the performance of the control system. In recent years,
boundary control has received much attention from the control community. Design of boundary controllers
for distributed systems has been usually based on functional analysis and semi-group theory, see Refs. [6,7],
and the Lyapunov’s direct method, see Refs. [8,9]. The Lyapunov’s direct method is widely used since the
control Lyapunov functions/functionals directly relate to the kinetic and potential energies of the distributed
systems. Using the Lyapunov’s direct method, various boundary controllers have been proposed for flexible
beam-like systems. In Ref. [10], the boundary stabilization of a beam in free transverse vibration is considered.
The control law is a nonlinear function of the slopes and velocity at the boundary of the beam to provide
exponential stabilization a free transversely vibrating beam via boundary control without restoring to
truncation of the model. The coupling between longitudinal and transversal displacements is also taken into
account. Recently, in Ref. [11] an active boundary control is proposed for an Euler—Bernoulli beam, which
enables one to generate a desired boundary condition at designated positions of a target beam based on
structure transfer matrix and the optimal control methods. It should be noted that the active boundary control
in Ref. [11] is implemented at various locations of the beam. Therefore, this method closely relates to the
modal control approach although it is called boundary control. In Refs. [12-14], the authors proposed an
elegant method, which was developed for stabilizing an unstable heat equation in Ref. [15], to design boundary
controllers for strings and beams with pretty simple dynamics. The fundamental idea is to find a coordinate
change to transform the string or beam system to a target system, which can be stabilized by a boundary
controller. This idea relies on feasibility of finding a kernel, which is a solution of a partial differential
equation depending on the system dynamics. The major difference between the controllers proposed in
Refs. [12-14], and the damping boundary feedback controllers in Refs. [8,10] is that the controllers in
Refs.[12-14] do not rely on a passivity property from the actuator to the sensor. However, the method
in Refs. [12-14] is hard to apply to the riser system addressed in this paper due to difficulties in solving a
partial differential equation to find a proper kernel. It should be mentioned that in Refs. [16,10,11,8],
two-dimensional strings and beams are considered, and distributed forces including the structures’ own weight
are ignored. Moreover, in Refs. [16,10,11,8] no proof of existence and uniqueness of the solutions of closed-
loop systems was given. It is well-known that there are systems governed by initial-boundary PDEs, whose
solutions do not exist or are not unique. For any control systems to be useful in practice, existence and
uniqueness of the solutions of the closed-loop control systems are as vital as stability. Moreover, there are no
actuators that can provide immediate forces/moments for control implementation at the riser boundary. If the
actuator dynamics is ignored, the performance of the controlled system can be significantly reduced, and can
be unstable in some cases [17]. It is therefore necessary to include the actuator dynamics in the control design.

This paper considers a problem of reducing transverse motion of flexible marine risers driven by a
hydraulic system at the top end of the risers under environmental disturbances induced by waves, wind and
ocean currents. Based on the energy approach, the equations of motion of the riser-hydraulic system are
derived. We show that the Lyapunov direct method and the backstepping technique can be used well to design
a controller to drive the hydraulic system at the top end of the riser. Proof of existence and uniqueness of the
solutions of the closed-loop control system is carried out by using the Galerkin approximation method.
Stability analysis is carefully analyzed. Simulation results illustrate the effectiveness of the proposed boundary
controller.
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2. Preliminaries and mathematical model
2.1. Preliminaries

This subsection presents two tools that will be used in the control design. The first one is a disturbance
observer to estimate un-modeled forces in the dynamics of the hydraulic system. The second tool is
a p-times differentiable signum function to approximate the signum function in the dynamics of the hydraulic
system.

2.1.1. Disturbance observer
Consider the following system

X =f(x)+u+d(x), (1)

where x € R", f(x) is a vector of known functions of x, u the control input vector, and d(¢,x) a vector of
unknown disturbances. We assume that there exists a nonnegative constant C, such that ||d(t, x)I<Cy. Now
we want to design the control input u to stabilize system (1) at the origin. It is obvious that if we can design a
disturbance observer, d(z,x), that estimates d(z,x) sufficiently accurately, then the control input u is
straightforwardly designed as u = —kx — f(x) — d(t,x) with k a positive-definite matrix. The disturbance
observer is given in the following lemma.

Lemma 1. Consider the following disturbance observer:

d(t,x) = & + p(x),

& = —K(x)E = KX (x) + u+ p(x), 2)

where K(x) =0p(x)/0x, p(x) is chosen such that the matrix K(x) is positive definite for all x € R".
The disturbance observer (2) guarantees that the disturbance observer error d (t,x) = d(t,x)— d(t,x)
exponentially converges to a ball centered at the origin. The radius of this ball can be made arbitrarily small
by adjusting the function p(x). In the case C4 = 0, the disturbance observer error d (t,x) exponentially converges
to zero.

Proof. (see Do and Pan [18]). The disturbance observer (2) is a dynamical system. The variable ¢ is generated
by the second equation of Eq. (2), which is an ordinary differential equation, with some initial value &(%),
where 7, is the initial time. The choice of the function p(x), which results in the matrix K(x) directly
affects performance of the disturbance observer. The larger eigenvalues of the matrix K(x) are, the
faster the response of the disturbance observer is, with a trade-off of a large overshoot of the observer,
and vice versa. An application of the disturbance observer (2) to an active heave compensation system
is given in Ref. [18]. To illustrate the effectiveness of the disturbance observer (2), we perform some
numerical simulations. In the simulations, we consider a scalar system in the form of Eq. (1) with f(x) =
arctan(x + x?) and d(t, x) = Zle (sin(it) + sin(x) sin(it/2)). The function p(x) is taken asp(x) = 20(x + x*/3).
This choice gives K(x) = 20(1 + x?), which is positive for all x € R. The initial conditions are x(0) = 1 and
¢(0) = 0. The control law is designed as u = —xx — f(x) — d(z,x) with k =5. We run two simulations.
In the first one, the disturbance d(z, x) is ignored in the control design, i.e. we set d(¢z,x) = 0 in the above
control law. Simulation results are presented in the top two sub-figures (A and B) of Fig. 1. In the second
simulation, we include d(¢, x) in the control law. Simulation results are plotted in the bottom two sub-figures
(C and D) of Fig. 1. It is seen from the sub-figures (A and C) that in the case where the disturbance
d(t, x) is ignored in the control design, the state x converges to a much larger ball than the case where the
disturbance observer is used in the control design. In the sub-figures (B and D), the disturbance d(z, x) is
plotted in the solid line while the disturbance estimate d(¢, x) is plotted in the dash-dotted line. From the
sub-figure (D), we can see that the disturbance observer provides an excellent estimate of the time and
state-dependent disturbance d(z,x). [
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Fig. 1. Effectiveness of the proposed disturpance observer: (A) state x without disturbance observer; (B) actual disturbance d(z, x) plotted
by solid line, and estimate of disturbance d(¢, x) plotted l3y dash-dot line; (C) state x with disturbance observer; (D) actual disturbance
d(t, x) plotted by solid line, and estimate of disturbance d(¢, x) plotted by dash-dot line.

2.1.2. p-times differentiable signum function

Definition 1. A scalar function A(x,a,b) is called a p-times differentiable signum function if it enjoys the
following properties:

(1) h(x,a,b) = —1 if —oco<x<a,

(2) h(x,a,b) =1 if x=b,

3) —1<h(x,a,b)<1 if a<x<b,

(4) h(x,a,b) 1is p times differentiable with respect to x 3)
where p is a positive integer, x € R, and « and b are constants such that a<0<5b. Moreover, if the function
h(x,a, b) is infinite-times differentiable with respect to x, then it is called a smooth signum function.

Lemma 2. Let the scalar function h(x,a,b) be defined by

f;f(r —a)f(b—1)dr 4
Pf@—ayfb-1)de

h(x,a,b) =2 €))

where the function f(y) is defined as follows:
S =01if y<0 and f(y)=)" if y>0 (5

with p being a positive integer. Then the function h(x, a, b) is a p-times differentiable signum function. Moreover,
if the function f(y) is taken as

SB)=0if y<O0 and f(y)=e"'" if y>0

then the function h(x,a, b) is a smooth signum function.
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Fig. 2. A twice differentiable signum function.

Proof. (see Do [19]). An illustration of a twice differentiable signum function (¢ = —0.1,b = 0.1) is given in
Fig. 2. O

2.2. Mathematical model

In this subsection, we develop equations of the transverse motion of the riser, and of the hydraulic system.
These equations will be used for the boundary control design in the next section. In developing these
equations, we make the following assumption:

Assumption 1. (1) The riser can be modeled as a beam rather than a shell since the diameter-to-length of the
riser is small, i.e. we consider the riser as a slender structure.

(2) Plane sections remain plane after deformation, i.e. warping is neglected.

(3) The riser is locally stiff, i.e. cross sections do not deform and Poisson effect is neglected.

(4) The riser material is homogeneous, isotropic and linearly elastic, i.e. it obeys Hookes’s law.

(5) Torsional and distributed moments induced by environmental disturbances are neglected.

(6) The riser deforms in one vertical plane, and its axial motion is ignored.

Remark 1. Items (1-4) mean that the riser will be modeled as a Bernoulli-type beam and not of the
Timoshenko type, and that the extension of the riser axis small. Bernoulli-Euler models are satisfactory for
modeling low-frequency vibrations of beams. Item (5) implies that we consider fluid/gas transportation risers
rather than drilling risers, and that moment induced by the asymmetry of the relative flow due to vortex
shedding is ignored. Item (6) means that we consider the transverse motion of the riser. The axial motion of
the riser is usually compensated by an active heave compensation system [18].

The riser coordinates and the hydraulic system, which provide the boundary control force in the transverse
direction of the riser, are presented in Fig. 3. It is assumed that the riser is subjected to a constant axial force
Py provided by an active heave compensation system. In Fig. 3, the Earth-fixed coordinate system is denoted
by OXZ with O fixed to the sea bed. The riser is connected with the hydraulic system via a ball joint, and is
also connected to the sea bed via a ball joint. This configuration results in moment free at both ends of the
riser. The Earth-fixed system is (OXYZ), where O is the bottom ball-joint of the riser, and the OZ axis is along
the initial riser. Let 5(z, r) be the transverse displacement of the riser. Let f(z, t, u(z, £), 5,(z, t)) be the transverse
distributed damping force and distributed external force induced by waves, wind and ocean currents, where ¢
denotes the time, u(z, ) denotes the component of the water particle velocity in the transverse direction, and
n,(z, 1) = (0n/01)(z, 1), i.e. the velocity of the riser in the transverse direction at (z, ¢). The distributed transverse
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Fig. 3. Riser coordinates and the hydraulic system.

force f(z,t,u(z, t),n,(z, 1)) can be given as [20,21]:
f'(Z’ Z, u(z, Z)a nt(za t)) =le +f.La

D /8
Sp=—Qpnlz1, Qp= (C-i- CD%\/;au>7

aD*u(z,t +D /8
fL = CM pw 4 t( )+ CD p2 \/;CT,,(Z, Z)M(Z, l)’ (6)

where f, and f; are referred to as the distributed damping and external forces, c is the linear viscous damping
coefficient, p,, the water density, Cp the drag coefficient, D the riser diameter and ,(z, ?) is the root mean
square of the water particle velocity, u(z, ¢). It is noted that in Eq. (6), the quadratic term of the drag force due
to the relative water velocity, #,(z, t) — u(z, t) is approximated by a linear expression involving the root mean
square of the relative velocity, and moreover, the relative velocity is approximated by the water velocity,
u(z,t). We assume that the distributed external force f; is bounded for all z € [0, L] and #>0. To develop
equations of motion of the riser-hydraulic system, we first consider the riser and then move to the hydraulic
system.

2.2.1. Equations of the transverse motion of the riser
To derive the equations of the transverse motion of the riser, we use the extended Hamilton’s principle:

[5)
/ (T —V+ W+ Wy)dt=0,
4]

on(z, tr) = on(z,12) = 0, (7
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where T is the kinetic energy, V is the potential energy, W, is the virtual work by nonconservative forces, and
W is the virtual momentum transport at the boundary.

The kinetic energy T consists of the kinetic energy of the riser and the piston of the hydraulic system, and is
given by

m, [* m
T =" [T dz+ i, ®

where m, = pA with p the mass per unit length and A4 the cross-section area of the riser, and my the mass of
the piston of the hydraulic system.
The potential energy V' is given by

L L L
V= £l n’.(z, t)dz + ﬁ/ n(z, 1) dz + %/ n¥z,0dz, )
2 Jo 2 Jo ¢ 8 Jo °F
where E is Young’s modulus, 7 the moment of inertia of the riser cross section and Py the constant axial force.
It is noted that in Eq. (9) the first term is due to the bending moment, the second term is due to the riser
tension, and the last term results from the strain energy.
Variation of the virtual work 6 W, by nonconservative force f(z, t,u(z, 1), 5,(z, t)) is given by

L
oW, = / [z tu(z, t),n,z,1)on(z,t)dz. (10)
0

Variation of the virtual work 6 W), by the virtual momentum transport at the boundary is given by
oWy = APy — At n,(L, 1)) — bun,(L, ))on(L, 1), (11)

where Py = Py — P; is the load pressure of the cylinder with P; and P, being the pressures in the upper and
lower compartments of the cylinder, see Fig. 3, Ay is the ram area of the cylinder, by represents the combined
coefficient of the modeled damping and viscous friction forces on the cylinder rod, and A4(z, n,(L, t)) is the un-
modeled force acting on the cylinder of the hydraulic system. This un-modeled force can include un-modeled
friction between the cylinder and the piston of the hydraulic system, and external disturbance acting on the
piston of the hydraulic system.

Now substituting Egs. (8)—(11) into Eq. (7) and integrating by parts result in

Lok 3EA
—mo”In(Z, t) - Elnzz:z(za Z‘) + PO’?;:(Z» Z) + T"];(Za t)n::(zs Z‘)
I3l 0

+/(z 1, u(z,1),n,(2, Z))) on(z, 1) = Eln_.(z,1)0-(z, 1)g

L

+ <Elnz:z(za Z) - POYIZ(Za Z) - %’7;(29 Z)) 5(27 Z)
0

+mgn,(L,t) + (AgPa — A(t,n,(L, 1)) — ban,(L, t))on(L, t)] dr =0. (12)

From Eq. (12) and the boundary conditions resulting from the riser configuration (see Fig. 3) we have

3EA .
—mon, (2,1) — EIN....(z, 1) + Pon..(z, 1) + T:ﬁ(z, n..(z,0) + f(z, t,u(z, 1),n,(z, 1)) = 0,

EA
_mHV’[t(Ls Z) + EI’/IZZZ(L’ [) - PO”IZ(L: Z‘) - 7”2(14? [) + AHPH - A(t9 nt(Lr t)) - bH"t(Lr t) = 09

n::(0,0) = n..(L, 1) = 0,
(0,7 = 0. (13)
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2.2.2. Equations of the hydraulic system
The second equation in Eq. (13) represents the dynamics of the piston of the hydraulic system with

n(L, 1) = xg,

n(L,t) = xp. (14)

Neglecting the leakage flows in the cylinder and the servovalve, the actuator or the cylinder dynamics is
written as [22]

Vi

4Bp.

where Vy is the total volume of the cylinder and the hoses between the cylinder and the servovalve, fi, the

effective bulk modulus, Cyr the coefficient of the total internal leakage of the cylinder due to pressure and Qy
the load flow. The load flow Qj related to the spool displacement of the servovalve, xp,, by Merritt [22]

Py = —Auxy — CurPu + Oy (15)

O = Coo Wi \/PHS sgn(xpy) Py (16)
PH
where Cyp is the discharge coefficient, Wy the spool valve area gradient, Pys the supply pressure of the fluid,
sgn denotes the standard signum function and py; is density of the oil. It is noted that since the supply pressure
Py is always higher than the load pressure Py, i.c. there exists a strictly positive constant g such that
Pys — sgn(xy,)Py =¢. Hence, Eq. (16) is well-defined for all xy, € R. The servovalve dynamics can be
described by

‘CHUXHL' =—Xm+ kHL‘iH (17)

where 7y, and kp, are the time constant and gain of the servovalve, respectively, iy is the current input to the
hydraulic system. Since Py is usually very large and ty, is usually very small, we scale the pressure Py and the
spool displacement xg, as Py = Py/Cpys and Xy, = xp,/Crs where Cys and Cpy are constants, to avoid
numerical error and facilitating the control gain tuning process. With scaling observation in mind, we write the
entire system of the riser-hydraulic dynamics in a standard state space form for the purpose of control design
in the next section as follows:

3EA
mo”ln(za t) = _Elrlzz:z(zs Z) + PO’/]:z(Z’ Z) + Tr’z(z7 l)nzz(zﬁ Z) +f(Z, l’ U(Z, t)’ 17[(23 Z))

X1 = X2,

bu Py

. EA EI AyC
X2 = ——X2 — —W:(L, Z) - —ng(lﬁ l) + —nzzz(La l) + nm
mpyg mgyg ZmH mpg

myg

1
X3 — —A(Za 7’][(L, l))a
mpg

4By An 4By Chr ABu.CupCraWy
— Xy — X3+ X3, X4),
VuCus ? Vi : Vs Cus 93(x3,x4)

1 k
xa + Hv

e tHCHa
1722(0’ [) = nZZ(L’ t) = 0’

n0,0)=0 (18)

X3 =

)'C4=— iHy

where we have defined

xi =n(L, 1), x2=n(L,1), x3=Pu, x4==3Xm,

Py, —h b _ P
g3(x3,X4) = X4\/ o — WX, 4, )XS, Pys =15 (19)
Pu Crs
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and the p-times differentiable signum function /A(x4,a,b) has been used to replace the signum
function. It is noted that the use of the p-times differentiable signum function %(x4,a,b) instead of the
signum function sgn(x4) in Eq. (18) not only makes the function g;(x3, x4) differentiable with respect to x3 and
x4 but also represents the actual dynamics of the spool dynamics. This is because there is always certain
inaccuracy in manufacturing the servovalve, i.e. the flow in the servovalve does not change its direction
immediately.

2.3. Control objectives

Under Assumption 1, design the control input iy for the riser-hydraulic system given by Eq. (18) to stabilize
the riser at its vertical position in the sense that all the states of the riser-hydraulic system (18) are bounded
and that:

(1) when the external disturbance f; is ignored, all the terms |5(z,?)], fo n(z,t)dz, fo 2(z,1)dz and
fo n..(z, t)dz exponentially converge to zero for all z € [0, L] and >, >0,

(2) when the external disturbance f; is present, all the terms [y(z,?)l, fo n’(z, 1) dz, fo 2(z,0)dz
and fo n..(z,t)dz exponentially converge to some small positive constant for all z e [0, L] and
t=t=0,

It is seen that the control objectives impose on both the displacement and integration of square of the slope,
velocity, and curvature of the riser along the riser length.

3. Control design

A close look at the entire system (18) shows that the system is of a strict-feedback form [4]. Therefore, we
will use the backstepping technique [4] to design the control input iy to achieve the control objective stated in
the previous section. The control design consists of the following three steps.

3.1. Step 1

At the this step, we consider the scaled pressure Py, i.e. x3, as a control to design a boundary control law
(i.e. a control law only uses (L, 7) and its spatial and time derivatives) such that it stabilizes the riser at a small
neighborhood of its vertical position. Ideally, we want to stabilize the riser at its vertical position but this is
impossible due to the distributed external disturbances f; induced by waves, wind and ocean currents.
As such, we define

X3e = X3 — U1, (20)

where o is a virtual control of x3. To design the virtual boundary control «;, we use Lyapunov’s direct
method. Consider the following Lyapunov function candidate:

L L L L L
m, P EA El
W]:*/ n?dZ'i‘iO/ ’7_%(12+7/ Wjdz*'*/ ’15de+‘)}/ Zf’][ﬂzdz
2 0 2 0 8 0 2 0 0

mpy yL 2
+51 (n,(L, 0+ AL, r)) : @D
m,

where whenever it is not confusing we drop the arguments z and ¢ of #,, 1., and so on; y is a positive constant

to be specified later. Since for all 1=7>0
L [ yL [
\ft/ﬁ@+L/n%z (22)
2 Jo 2 )y

,yL L '))L L L
—Z/ﬁw—j/ﬁ®< .
0 0 0
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the function W satisfies

m, —yL [* Py—yL [F EA [F EI [F
W oTV/ nrdz + 02/ / n?dz—}-?/ nﬁdz—}-?/ n> dz
0 0 0 0

my L 2
+ T (nt(Ls t) + _n;(La Z)) s
ny

o +7L [F Py+yL [F EA [T EI (*
W1<u/ nrdz + oty / n%dz+—/ nf‘dz+—/ n* dz
2 0 2 0 - 8 0 = 2 0 -

mpyg yL 2
i

A\

Hence if we choose y such that
mO_VL:Cla PO_VLZCL (24)

where ¢; and ¢, are strictly positive constants, then the functlon Wl defined in Eq. (21) is a proper (i.e. posmve
definite and radially unbounded) function of fOL n?dz, fo n2. dz, fo 2dz and (n,(L,t) + (yL/m,)n.(L, 1)*. We
do not detail the conditions (24) at the moment, but deal with them after the control design is completed since
the constant y needs to satisfy some more conditions later. It is noted that we do not include the riser
transverse displacement #, like fo n*dz, in the function W, because thls term causes dlfﬁcultles in designing
the control o, later. As such, after proof of convergence of fo n?dz, fo _dz, and fo n?dz, convergence of
fo 2dz and the riser transverse displacement # will be proved by using Lemmas 3 and 4 in Appendix A.
Differentiating both sides of Eq. (21) with respect to time ¢, along the solutions of the first and the third
equations of Eq. (18), and using integration by parts result in

Py 3yEA , yEI ,
— z

. EA
W, = ( Ponn, +——=3n, — EIn.__n, + EIn_. 2 :
1 < onH, + 7 N, WMy + L£In.0, + 2m, n, + 8m, zn, m,

L ypy [ 3pEA [* 3yEI (* L
+yEIan7:Z+inf)’ —/—0/ n%dz—y—/ n‘fdz—/—/ Vﬁ,dz—z/ nfdz
2 0 2]’7’!0 0 - 8}’}’10 0 - 2]’}’[0 0 - 2 0

L EA
+ <17t(La Z‘) + ZT”:(La Z)) <_bH17[(L: t) - POW:(L, l) - 71/’2(1" t)3 + Elnzzz - A(Za nt(Lv l))

7z

WZH’))L L
+Cr3Ap(x3e + 1) + p n(L,0) | + [ (1, +yzn.)f (e)dz, (25)
0

o

where we used f(e) to denote f(z, ¢ u(z,t),n,(z,¢)) to save some space. Now substituting the boundary
conditions given in Eq. (18) into Eq. (25) results in

. P, [* 39EA [* 3yEI [* r LP
= | ngdz_y_/ itaz- 22 r,%,dz_l/ U B0 )
2m0 - 81/}’10 0 - 2m0 0 == 2 0 2mo -

/gL,fA 4(L 1) + 3 ﬂ,(L 1+ (n,(L t)+—n (L, t)) <—be1,(L, 1) — A(t,n,(L, 1))

mpyg
+Cy3Ap(x3e + 1) + L

o

naa(L. z)) 4 /0 (1, + 70.)f (9) dz. (26)

From Eq. (26), we choose the virtual control o as

| ( myyL
AugCus My

o =

yL yL ~
’12[(L7 t) - kl (nt(L7 t) + :n_nz(L» t)) - bH:n_nz(L’ [) + A) > (27)
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where k; is a positive constant to be selected later, A is an estimate of A(t,n,(L,1)). The estimate Ais given by

A= —(+kx2),
é:-ig—k(dwrixz), (28)
mpeg mpyg

where k is a positive constant, and we have defined

EA EI A C
&= xy— Ly (Lyt) — o (Lo 1)+ (L 1) + s (29)
myg myg 2mpy myg mg

It is noted that the disturbance observer (28) is based on Lemma 1 applied to the third equation of Eq. (18)
with p(x) = kx. Define the disturbance observer error as

Ay =A— A (30)

Differentiating both sides of Eq. (30) along the solutions of Eq. (28) and the third equation of Eq. (18) gives

. k .
Ae=—— A, + A. (31)
mpy
This equation will be used in the stability analysis of the closed-loop system after the control design is
completed. Now substituting the virtual control «; given in Eq. (27) into Eq. (26) results in

. Py, [ 3yEA [F 3yEI [* y [E LP
W, = 7 0/ n>dz — 7 / ntdz — / / n?,dz—ﬁ/ ntzdz—y—on%(L,t)
2m0 0 - 87’7’10 0 - 277’10 0 = 2 0 ng -
yLEA L L 2
—@n¢@m+%ﬁwn4h+m(muw%;mu®

yL -
+ (W;(L» 1)+ m_;/’z(L? l)) (e + Cu3Anxse.) + /0 (1, +yzn.)f (e)dz. (32)

On the other hand, substituting the virtual control «; into the third equation of Eq. (18) gives

b P, EA El mpyL
n=—Jhm—imun———@@m+—wmwn+(—H/%@ﬁ
my mpy 2mH mpy o
L L A Ay C 1
-%(ML0+Lm@m)—mlwﬂmnw)+iiﬂmf_—m. (33)
n, m, mpg mpyg

3.2. Step 2

Our goal at this step is to regulate x3, to a small neighborhood of the origin by considering the fourth
equation of the entire system (18) where for simplicity of the design process, we consider g;(x3, x4) as a control
instead of x4. As such, we define

X4e = g3(X3,x4) — 02, (34)

where o5 is a virtual control of g;(x3,x4). To design a,, we first calculate x3,. Differentiating both sides of
Eq. (20) along the solutions of Eq. (27), Eq. (34) and the third equation of Eq. (18) gives

. 4By An 4By.Cur 4By CupCrusWn myyL
e — — - + e + + =z L,t
X3 VuCos R VidCrs (X4 + 02) o N(L, 1)
ki +by)yL k K k+k
SR ) L S S S LR L DT A0)) (35)
0 mpy mpy my
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To design the virtual control «y, we consider the following Lyapunov function candidate:
Wy,=W,+ 2X3e (36)

whose derivative along the solutions of Eqgs. (32) and (39) is

; 7P p 3yEA /L 4 3yEI /L s y /L , yLPy
W = d — d L ”d -1 d _ =9 L’[
2 2m0 / 112 z 8m0 0 172 z 2}’}’10 ) néh Z 2 A f’]l z 2m0 172( )

LEA v 2
- Vg—n“(L 0+ —m 2(L,t) — (ki + by) (V/,(L, )+ :n—nZ(L, z))

yL 4By An 4By, Cur 4B 1. CupCrsWy
L)+ 20 (L.0)) Cozdy — -
+x3eK'7f( , )+mo n.(L, )) md = X2 7 X3+ Vo dCr o
L ki + by)yL k K’ k+k
SR S kT L 7 WL S LAY S S L N PR O )
0 my mgyg mpyg mpg
L 4B, CupCraW L
+ (n,(L, 0+ L, l))AeJr PueCrpCrsWir / (1, + y2n.)f (o) dz. (37)
m, VH CH3 0

Eq. (37) suggests that we choose the virtual control a, as follows:

VH CH3 ))L 4ﬂH AH 4:BH CHT
— v —kyxse — (L, 0) + =0 (L, 1) ) Crz A e e
= 4ﬁHeCHDCH4WH[ ¥ ('h( )+m077k( ) ) Curs H+VHCH3XZ+ Vu .
yL ki + by)yL k K k+ki~
S L W G L L) L) S .Sy IA}, (38)
0 ny mpg mpg mg

where k; is a positive constant, and we did not cancel the useful damping term —(4fy,Cur/V 1)xs.. It is seen
from Eq. (38) that o, is a smooth function of xa2, x3, .(L,?), n.(L,?), 1,,(L,?), n...(L,t) and . Now
substituting Eq. (38) into Eq. (37) gives

: vPy [T 39EA [T 39EI [T L LP
Wy= — 120 0/ n?dz—y—/ ni‘dz—/—/ nf-dz—z/ iy dz =222
2m, - 8my Jo 7 2my Jo ° 2.Jo Zm, =

LEA L 2 48,.C
Vg n(L, 1) + —n,(L 1) — (ky + bg) (n,(L, 0+ = y.(L, z)> - (kz + M) X2,
mg m, VH
k+k 4B CrupCraW L
— X de + <n,<L, o+ L, z))Ae + HuCroCraWn et / (1, +yzn.)f (o) dz.
My my Va/Cmz 0
(39)
Moreover, substituting Eq. (38) into Eq. (35) results in
. 4y, C L
X3e = — <k2 + y) X3¢ — <’1t(Ls Z‘) + y_nz(Ly Z)) CH3AH
H m,
4
+ ﬁHeCHDCH4WHx4e _kthk A, (40)
VN Cus my

3.3. Step 3

This is the final step. The actual control input iy will be designed to regulate x4, to a small neighborhood of
the origin. Since oy is a smooth function of x3, x3, n.(L, ?), n.,(L, ), n.,(L, 1), n...(L, t) and &, differentiating
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both sides of Eq. (34) along the solutions of Eq. (38) and the entire system (18) gives

4 = (ag3(X3,x4) 6a2> (_ YPueAn  APuCur +45HeCHDCH4 Wh

- X X
0x3 0x3 ViCrus ° Ve Vi Cus

g3(x3, X4))

0g;(x3, x4) 1 kaw . Oop Oop
—_— - D — —A L,
+ ax4 THY X4 + THUCH4 IH ax mpy (l 7’[( t)) a (L t) ’17{( )
Oor Ootr Oor
— L —n..(L,
aﬂ-t(L t)nzft( ) Ztt(L, Z)nzltt( ’t) ,,7(L t) 4 t( t)

6062 k
——— | ——E¢—k|DP+— .
o¢ < mHé ( +mez)>
To design the actual control iy, we consider the following Lyapunov function candidate:

Wi =W, +2x4e

whose derivative along the solutions of Egs. (41) and (39) is

. 9Py [, 3yEA /L 4 3yEI /L 5 Y /L ) yLPy ,
Wy= — 2dz — ‘dz — 2dz—1~ dz — =202(L, ¢
3 2mo/ - €= 8m0 0 - 42 2m, Jo 22 02 2 Jo i &= 2m, n=(L, )

4ﬂHe CHT) 2
v X3¢
H

2
L+ )~ G+ b (L + 2oL ) = (ks
m "

v xg [4[3H(»CHDCH4 WHX <ag3(x3ax4) _ %) (_ 4B An X 4By, Cur M
¢ VH/\/ CH3 ¢ 6X3 6X3 VHCH3 VH

ABu.CupCraWy ) ag3(>€3,?€4)< 1 kmy . >

+ X3, X4) | +———— | ——Xa + i
Vi Cus (43, %a) 0xy4 ' tCra
60(2 1 6062
D — A L —_— L
axz ( (ZD 1’,1( > t))) a (L t) ( ) anZt(L’ [) 7’2{1( > Z‘)

0oy Ootp Oon k k
T T a T z) Neeel L) = 5 (‘ - <@ * me2> )}

k+k L
ke l>c3eAe+<m(L l)+ n(L t)) /0 (1, +yzn,)f (e)dz.

Eq. (43) suggests that we choose the actual control iy as follows:

i = i [—k3x4 _PuCnCrsWu, (M _ %) ( PpeAn
i 0g5(x3, X4) ‘ Vi Ch3 ¢ ox3 0x3 ViuCrs
Hv aX4
4By Cur 4B CupCraWu agg(x3,x4) 1 oty 1 -
= O - i+ 2 (- — A
VH X3+ VH«/ H3 B(X3’X4) aX4 THy s 6x2 mpy
Oor Oon Oor 0oy
+—1. + (L) + ——— 1., (L, _{_7 N, (L, t
N i ) L ) LA o Kl

0oy k k
-|-a—5 <—Ef—k((p+axz)>]’

(41)

(42)

(43)

(44)

where k3 is a positive constant. It is seen from Eq. (44) that the signals n(L, ), n.(L,?), n.,(L,?), n.,(L,1),
Noyre(Ls ), 4. (L, 1), 1...,(L, 1), x3 and x4, which are measurable or numerically calculated from measurable
signals, are required for implementation. It is noted that differentiating twice and three times the slope #.(L, )
with respect to time to get #,,(L,?) and #,,,(L,?), respectively, is undesirable in practice due to noise
amplification. Therefore, it is suggested to use the boundary condition, the second equation of Eq. (13) to
estimate #.,(L, t) and n.,,(L, ). We define an estimate of y,,(L, t) by #,,(L, t) when the disturbance 4(¢,n,(L, t))
in the second equation of Eq. (13) is replaced by its estimate A given in Eq. (28). With this notation and the
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second equation of Eq. (13), we have

i bn Py EA 2 Anp, 1
Li)=— L0) = —n.(L,0) = 5—n (L, 1) + ——n...(L, { P =14
7]”( 5 ) m 17[( > ) my ’7;( > ) 27’71[—] ’7:( > ) + P ’14“( ) + my H my

781

(45)

Now, numerical differentiation of both sides of Eq. (45) with respect to the spatial variable z gives an estimate
.4(L, 1) of .,,(L, t). On the other hand, numerical differentiation of both sides of Eq. (45) with respect to time
¢, then with respect to the spatial variable z, gives an estimate 7,,(L, ¢) of 5.,,,(L, t). The estimates #_,(L, t) and

.;:(L, t) can be used in the control expression (44) instead of #.,(L, t) and n.,,(L, t), respectively.
Substituting Eq. (44) into Eq. (43) results in

. Py, [ 39EA [T 39EI (* v (L wLP
W3=—y—0/ nfdz—y—/ n?dz—y—/ fﬁ-dz—ﬁ/ n2dz = 0L,
) 0 0 2 /o 2m, ©

2m, : 8m, 2m, 0
yLEA , 7L yL 2 4B Cur\
_ T AL (L) — L (L - 2P He > AT
S, n:(Ls 1) + 51 (L, 1) (k1 + b)) | n,( ’t)+ma'7-’( .1 ky + Ve )5
Qo 1 k+k vL L X
et g, = B (L + oo )ack [t v iz
Xo My my 0

Before going further, let us consider the following:

_ yLP
Oy = m

L L 2
CHA(L 1)+ %nf(h 1) — (ki + bu) <m(L, )+ Zn—nz(L, t)) ,

0

L
Opzn = /O (1, +yzn.,)f (e)dz.

Using Eq. (6), a simple calculation shows that

2 2
vL L (P yL
m, m, \ 2 m,
yLQ L L 1+yL [F
Oyn< - (QD Ryl —s) |z orapn +oto [ ntaz 0 [ e
481 0 0 48 0

where ¢ and ¢ are arbitrarily positive constants. Now substituting Eq. (48) into Eq. (46) gives

: 7Py L 39EA /L . 39EI /L 5
Wi< — —yLQpe; — yLe 2dz — Ydz -T2 d
’ (2m0 e Y 8) /0 =" 8, Jo T 2m, Jy =

) LQ L yL [P L)’ LEA
_(1+QD—V ?—s)/ n?dz— = (—20—@ )>n§(L,t)—y8 (L, 1)
0 m, m, m,

L 2 484, C
~ (kv + by —7L) (n,(L, 0+ =L z)) - <k2 + ﬁ”V—H’”) 3, — ks,

adzi k+ k;
Ox,my my

L 1+yL [F
x3€Ae + <’1t(L9 t) + y nz(La t)) Ae + y / fi dZ'
m 4 Jo

Therefore, it is sufficient to choose the constant k; and y such that

P,
yO—VLQD81—7L8=C3,
2m,

Y yLQp
Tio, - —e=ca,
P TR T TET G

ki+byg —7yL =cs,

(46)

(47)

(48)

(49)
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Py (L)
2 m,

= C¢, (50)

where c¢3, ¢4, ¢s5, and c¢g are strictly positive constants. It is recalled that the constant y also needs to satisfy
condition (24). A straightforward verification shows that there always exist design constants y and k;
simultaneously satisfying conditions (24) and (50). On the other hand, substituting Eq. (44) into Eq. (41) gives

4ﬂHeCHDCH4WH % 1

X4e = —k3X40 — X3e —
Vv Cm Oxy myy

(1)

The control design has been completed. For convenience of stability analysis later, we rewrite the closed-loop
system consisting of the first and the last two equations of Egs. (18), (33), (40), (51), and (31) as follows:

3EA
mOr]lr(Z7 Z) = _Elnzzzz(z7 t) + PO’Izz(Za t) + T ’7?(27 1)77;:(2, l) +f(Za Z H(Z, t)a ’1[(29 Z))’

X1 = X2,
. b P EA EI mgyL
Xy= =Xy — (L) — (L) + (L D) + (— My (L)
my my 2mpy my o
L ~ Ay C 1
—k (m(L, n+ By L, z)) — b (L) + A) I s — — A,
m, m, mpyg mpg
. 464.C L
X3¢ = — (kz + M) X3¢ — (’/l[(Ls )+ V—W;(L, f)) Cm3Ag
VH my
4B, CupCraW k+k
n Br.CrpChra Hx4e B IA(),
VavCu3 my
. 4ﬁH CHDCH4WH a(xg 1
= —kyxy, — DHe 2y
X4e 3X4e VH CH3 X3e ax2 M es
1-:(0,0) =n_.(L,1) =0,
n0,=0
. k .
Ae=—— A, + A. (52)
mg

We are ready to state the main result of our paper in the following theorem.

Theorem 1. Under Assumption 1, the control input iy given in Eq. (44) solves the control objective provided that
the initial tension Py is strictly positive, and the design constants y and k\ are chosen such that conditions (24) and
(50) hold. In particular, the solutions of the closed-loop system (52) exist and are unique. Moreover, when the
external distributed disturbance f; is zero, and the disturbance A(t,n,(L,t)) is constant, all the terms |n(z,1)|,
fo n3(z, 1) dz, fo n3(z,t)dz, and fo n2.(z, t)dz exponentially converge to zero, and when the external distributed
disturbance f; is different from zero, but bounded, and the disturbance A(t,n,(L,1)) is time varying with bounded
derivatives, all the terms |n(z,1)|, fo n(z,1)dz, fo 2(z,1)dz and fOL n2.(z,t)dz exponentially converge to some
small positive constants.

Proof. See Appendix B. [
4. Simulations
To illustrate the effectiveness of the controller proposed in the previous section, we carry out some

simulations in this section. The parameters of the hydraulic system are taken based on [23] as follows:
my = 1000kg, Ay =0.65m?, by =40N/(m/s), 4B,/ Vg =4.53 x 108 N/m’, Cpp =221 x 10~*m’/Ns,
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¢ 300 1000

Fig. 4. Simulation result without the proposed controller: transverse displacement #(z, £).

200

1
¢ 300 ,000

Fig. 5. Simulation result with the proposed controller: transverse displacement #(z, 7).

CupWn/Jp =342 x 10> m3/Ns, Pys = 10,342,500 Pa, kg, = 0.0324, 75, = 0.00636. The scale factors
are taken as Cy3 = 6 x 10°, Cpy = 5 x 1077 to scale Pyg down and 7y, up as discussed in Section 2.2.2. The
riser parameters assumed are: length L = 1000m, diameter D = 0.14m, density p = 8200 kg/m?, Young’s
modulus £ =2 x 108kg /m?, initial tension Py = 60 x 103 N. The parameters of the distributed damping and
external forces are taken as follows: ¢ = 120N's/m, p,, = 1024 kg/m?, and Cp = 1.2. Using the linear wave
theory, the horizontal water particle velocity and acceleration are expressed respectively as [20]

N,
L cosh(k,;z) .
u(z,t) = ; (Awiww,-Wk‘:L)sm(wwil + (pwi)), (53)

where the amplitude 4,,;, wave number k,,;, frequency w,;, phase ¢,,; of the wave ith are given by

Wm — Whpr . 1.25 W4 2 —1.25(w RS
Wyi = Wi + — I, Swi == °H y e - Wo/Wai) 5
NW 4 )51;1 s
Wmi — WMi )
Ay = 4 /28, N 9.8k, tanh(k,;L) = w;;, @,,; = 2nrand(). (54)
w

In Eq. (54), minimum and maximum wave frequencies are w, = 0.2rand/s, wy = 2.5rand/s; the two-
parameter Bretschneider spectrum S,,; is used with the significant wave height Hy,, = 4 m; the modal frequency
is w, = 2n/T,, with the period T, = 7.8; N,, = 10; and rand() is a random number between 0 and 1. The
observer and control gains are chosen as: k=2, y=107>, k; =k, = k3 = 2. It is directly verified that
conditions (24) and (50) are well satisfied with ¢ =¢ = 107>. We assume that the disturbance
A(t,n,(L, 1)) = 0.5my sin(0.5¢ + 2nrand()). The initial conditions are taken as o = 0, 5(z, ty) = 4z(z — L)/ L,
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Fig. 6. Simulation result with the proposed controller: (A) transverse displacement at the top end 5(L, t); (B) virtual error x3.(¢); (C) virtual
error x4.(2); (D) control input iy (7).

n,(z,t0) = 0 and &(#p) = 0. We use a finite difference scheme [24] to approximate the uncontrolled/controlled
(continuous) system for the simulation purposes.

We run simulations without the proposed boundary controller, i.e. we set all the observer and control gains
to zero (k=ky =k, =k; =0), and with the proposed boundary controller, ie. k=2, y= 1073,
ki = ky = k3 = 2. The length of simulation time for both cases is 300s. The transverse displacement #(z, t)
for the uncontrolled and controlled cases are displayed in Figs. 4 and 5, respectively. It is seen from these
figures that the proposed boundary controller can reduce deflections of the riser transverse motion
significantly, i.e. the displacement magnitudes are significantly reduced. This illustrates the effectiveness of the
proposed boundary controller in the sense that it is able to drive the riser to the small neighborhood of its
equilibrium position (Fig. 6).

5. Conclusions

Based on the energy approach, the equations of motion of a marine riser-hydraulic system were presented.
These equations were then used for the design of the boundary controller at the top end of the riser based on
Lyapunov’s direct method. The proposed controller robustly stabilized the riser at its equilibrium vertical

position. Proof of existence and uniqueness of the solutions of the closed-loop system was given. Future work
is to carry out experiments to validate the proposed controller.
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Appendix A. Useful lemmas

This appendix provides two useful lemmas that will be used in the proof of Theorem 1.
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Lemma 3. For any y =[y;,..., V... ,yn]T with y; € C'[0,L], i=1,...,n, the following inequalities hold:
L L
| 56050085 <2L5000) +42° [ 1000035 (55)
L L
/0 ¥(8).9(s) ds <2Ly(L). (L) + 4L* /0 y,(8).y,(s)ds. (56)

Proof. We prove Eq. (56). The proof of Eq. (55) is similar by using a change of coordinate ¢ = L — 5. Using
integration by parts, we have

L L
/0 ¥(s).y(s) ds = y(s).p(s)sly — 2 /0 5y(5)-y,(s) ds
1 L L
<L +5 [ 5030 ds+2 [ 056
1 L L
<L +3 [ 5050ds+22 [ 300,0ds (57)
which gives Eq. (56). O
Lemma 4. For any y =[y,..., V..., y,)" with y, € C'[0,L], i =1,...,n, the following inequalities hold:

L L
}g&f](y(S)y(S)) <(0).y(0) + 2\//0 y(5).(s) dS\//O ,(8).y,(s)ds, (58)

L L
‘E}&PL‘](V(S).J/(S)) <y(L).y(L) + 2\/ /0 (5).3(s) dS\/ /0 P4(5).y,(s)ds. (59)

Proof. We prove Eq. (58). The proof of Eq. (59) is similar by using a change of coordinate £ = L — 5. From
fundamental of calculus, we have

W(5)(s) = 9(0).(0) + 2 /0 OO dL

<(0).y(0) + 2\/ /0 V(OO dl \/ /0 YOy (D dC, (60)
where we have used the Cauchy—Schwartz inequality. O
Appendix B. Proof of Theorem 1

We first prove existence and uniqueness of the solutions of the closed-loop system (52) then move to prove
convergence of the solutions.

B.1. Existence and uniqueness

Let H?(0, L) be the usual Hilbert space [25]. Our analysis is based on the Sobolev spaces:

Vs=ne H0,L)n0,)=0 (61)
equipped with the norm |5y, = |In..|,, and
Ws=neVsnNH0,L)n..0,0)=0,n_.(L1)=0 (62)

equipped with the norm 5|l = [n..ll> + [I1.... . where |.||, denotes the L” norms. From the Poincare
inequality, it follows that ||.||,, and |.||y,, are equivalent to the standard norms of H?(0,L) and H*0, L),
respectively. Next, we consider ¢ € V5. Now inner producting both sides of the first equation of Eq. (52) by ¢
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then integrating from 0 to L results in

m, /O Uz = —EI /0 S dz 4 Py /0 Cpdz i A / Pz + / Cfopdz (63)

We will use the Galerkin approximation to show that for all ¢ € Vg there exists y € W such that Eq. (63)
holds. Let ¢/ be a component of a complete orthogonal system of W for which {5(z, 1), n,(z, to)}
€ Span{¢', ¢*}. For each ne N, let Wg, =Span{¢',¢* ...,¢"}. We search for a function n"(z,7) =
E]'f:l K/ ()¢ such that for any ¢ € W, it satisfies the approximate closed-loop system

L L L
mo/ Mypdz = —EI/ ﬂ?zz;¢dZ+Po/ n.¢dz +— 17”217:-’;¢>d2+/ S"(@)pdz,
0 0 0 0
X=X,
b P EI mpyyL
W= = g (L) = 5P (L) (L) + < I (L, 1)

myg my 2m o

L Ay C 1

s <n’:(L, 0+, r)) b L+ ) (AnCw g L
my my mg
4 C L
= — (ko Py o oy + 5L, 0)) Cosdn
VH my
4B.CupCruaWn oo k+ k A
Vi Cm oomy T
. 4B CupCruasWn ooy 1
N ey — e n Y2 L o
x4e 3x4e VH CH3 x3e + aX2 my e’
n..(0,0) = n’ (L, 1) =0,
n"(0,1) =0,
n k n un
Ae:_iAe—FA : (64)
mpy
with the initial conditions
n"(z,t0) = n(z, t0), n;(z,t0) = n,z, %) (65)

which are possible since (y(z, ), #,(z, tp)) belongs to W, for n>=2. Note that Eqs. (64) and (65) are in fact a
system of ordinary differential equations in the variable ¢, which has a local solution in [0,,). After the
estimates below, the approx1mate solution will be extended to the interval [0, 7] for any given T >0.

Estimate 1. Upper bound of fo "2dz + fo 2dz. In Eq. (64), we take ¢ = 5" and consider the following
Lyapunov function candidate:

L L L L L
P EA El
W, = ﬁ%o/ e dz+—20/ ™ dz+—8 / ng4dz—|—7/ " dz—i—y/ zn)it dz
0 0 0 0

m yL 2
+= (n’;’(L, 1)+ m—n’;(L, t)) +=
0

5 3 +35 A"2 (66)

2
xgle +5 2 4e
where 7y is the positive constant specified in Section 3, and A is a positive constant to be specified later.
Indeed, as in Section 3, the function W, is proper (i.e. positive definite and radially unbounded).

We use the same technique in Section 3 to calculate the time derivative of the function W, along the solutions
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of Eq. (64):
L L L L
. 3vEA 3vEl v
Wy —en [z [Tptas - T [z ey [z - 2o et
0o &qm, Jo - 2m, Jo T 0 m, -
yLEA yL 2 48, C
IR ) = (es — o) (L) + =L ) — ky + P _ X2 — (ks — o)xl2
Smo mg VH

ko1 (o 1N\ 1 (k+k\P 1 [ () S L
_<m_H_%<axgm_H) ‘@(m,, Tap A T, /OdeZ’ 67)

where the positive constants c¢3, ¢4, and c¢s are specified in Section 3, see Eqgs. (24) and (50), and ¢ is an
arbitrarily positive constant. From Eqgs. (66) and (67), there exist sufficiently small ¢ and sufficiently large 4
such that

Wn < —Cp Wn + Qna (68)

where ¢, is a strictly positive constant, and Q, is the maximum value of (1/40)4" + ((1 4 yL)/4¢) fOL 12 dz,
which is bounded by some nonnegative constant. The differential inequality (68) implies that
W () < (W (to) — (Q,/cu))e™"™ +(Q, /c,), which in turn means there exists a nonnegative constant M
such that

L L L
/n’fzdz—}—/ n’;zdz—i—/ n2dz<M, Vtel0,T], neN. (69)
0 0 0

Estimate 11: Upper bound of 1,/(z, ty) in L*-norm. In the first equation of Eq. (64), taking ¢ = n'(z, tp) and
t =ty gives

L L L
my / W2z 1) dz = — ET / Wt 1) dz + Po / Wz 102 10) dz
0 0 0

3EA

T3

L L
/0 W2 (2 12 10) dz + /0 POz 10) . (70)

A simple calculation shows that

EI? L p2 L
(4u) 0 n;’fzz(z, to)dz + ﬁ/o 11?:2(2, to)dz
1 1

3EA\?> 1 [T _—
+ (—> _/ ’72’4(2, lo)’lg(Z, lo) dz + _/ f 2(.)
2 4uy Jo )

where 1, is an arbitrarily positive constant. Since the initial values ;1(2, to) and n,(z, ) are sufficiently smooth,
and we have already proved that fOL n2(z, 1) dz, fOL n2(z,0)dz, [y n"(z,1)dz are bounded, see Estimate I
section, from Eq. (71) picking u, strictly less than m,/4 shows that there exists a nonnegative constant M,
such that

L
(o — 4y11) / W2z 1) dz<
0

dz,  (71)

=ty

L
/ ni(z,t0)dz< M, Vie[0,T], neN. (72)
0

Estimate 111: Upper bound of n,,(z, t) and y...(z, t) in L*-norm. To estimate the upper bound of these terms, we
use a difference approach. Let us fix # and ¢ such that £ < T — ¢. Now taking the difference of the first equation
of Eq. (64) with t = ¢+ ¢ and ¢t = ¢, and then letting ¢ = y/'(t + &) — n/(¢) result in

EI [td

L
Y d
Do / — (2t + &) — iz, 1) dz + — (2t + &) — Lz ) dz+ Q) + Q= 0, (73)
2 ), dr 2 ), dr
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where

Py
2

EA L n2 n n2 d n n 2
5 ORGP O+ ) )

L
d
Q=3 [ SO+ -Gy
o df

Qy = (mu (i (L, t 4+ &) — mi (L, 1) + b (ny (L, t + &) — (L, 1)) — Ay (Pu(t + &) — Py (1))
L
x({ (Lt + &) — (L, 1)) — / (" (O imre = /" (O e=) 0 (L 1 + &) — (L, 1)). (74)

Since the initial values #(z, to) and ’71(2 ty) are sufﬁc1ently smooth, #(0,7) = 0, 7..(0,7) = 0, n..(L, ) = 0 for all
n € Wy and all the terms fo n2dz, fo n"2(z, 1) dz, fo "2(z,t)dz are bounded, see Estimate I section, using the
Mean Value Theorem and Lemmas 3 and 4 shows that there exist nonnegative constants M3, and M3,
such that

L L
Q1] + 1221 < M3 / ) (z,t + &) — n}(z,0)* dz + M, / (n(z,t 4+ &) — 'z, l))2 dz. (75)
0 0
Using Eq. (75), we can write Eq. (73) as
n

O (L O Ms@(1,8) = 91, < Bty M), (76)

where M3; is a nonnegative constant, and

L
&(1,6) = m, / (Gt + &) = 'z 1) dz + ET /0 (Lt + &) — (2 1) de. (77)

Dividing both sides of the last inequality in Eq. (76) by & then taking the limit & — 0 gives

L L L
m, / Nz, t)dz + EI / N (z,1)dz< [m / "z, to) dz + EI / n"(z, to) dz] eMasi=t) (78)
0 0

for all 0<t)<t<T. Now from the estimates given in Egs. (69) and (71), we can deduce from Eq. (78) that
there exists M3>0 depending on 7T such that

L L
mg/ "y 2(z, 1) dz+E1/ nm(z 1)dz< M. (79)
0 0

From the estimates given in Egs. (69), (72) and (79), we can use the Lions—Aubin theorem to get the necessary
compactness to pass the nonlinear system (64) to the limit. Then it is a matter of routine to conclude the
existence of global solutions in [0, T'].

Uniqueness: Let u and v be two solutions of the closed-loop system (52). Letting @ = u — v, we have
w(z, ty) = 0 and w,(z, t)) = 0 and from Eq. (63) we have

L L L
o / wupdz = — EI / @ dz 4 Py / wopdz 224 / (Rtss — vP0,2) dz
0 0 0

L
+/ (F(®ly=y = f(®)]y=0)p dz. (80)
0

By taking ¢ = w(z,7) in Eq. (80) and using the Mean Value Theorem and passing of the limit of all the
estimates given in Egs. (69), (71) and (79) previously, we readily have

d L L L L
_(/ w?dz—i—/ wi,)éM;;(/ wfdz+/ widz), (81)
dr \Jo 0 0 0

where M, is a positive constant. Since w(z, fy) = 0 and w,(z, ty) = 0, using Gronwall’s Lemma shows that
w=0,1.e.u=vforall t1=1>0 and z € [0, L].
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B.2. Proof of convergence

First, we consider the case where /', = 0 and 4(z,1,(z, ?) is constant, i.e. A = 0 then move to the case where
fr#0 and 4#0. .
(1) Case f; =0 and A = 0: In this case, we consider the following Lyapunov function candidate:

2
Uy =W, +§A§, (82)

where A is a positive constant to be specified. Differentiating both sides of Eq. (82) along the solutions of Eq.
(49) and the last equation of Eq. (52) results in

L L L L

. 3vEA 3vEI L
U1<—C3/ n?dz—y—/ ni‘dz—y—/ ni.dz—at/ n?dz — 2= con¥(L, 1)
0 - Smo 0 - 2m0 0 0 m,

LEA 2 4B,C
L) = s = ) (1L 0+ o) = (Jeo 4 I 5 )3 - 0,
8my, Vu
k1 (omy 1 1 (k+k 1,
B (m_H 4o (axz mH> 4 ( my ) E)Ac’ (83)

where the positive constants c¢3, ¢4, and ¢s are specified in Section 3 (see Egs. (24) and (50)), and ¢ is an
arbitrarily positive constant, and we have used f; =0 and 4 =0 in this case. Since ¢5 and k are strictly
positive constants, and o, /0x; is equal to a constant, we can always pick sufficiently small ¢ and sufficiently

large A such that ¢s — o and
Ak 1 Oy 1 k+ki\~ 1
my Oxz my 40 40

are strictly positive constants. Using Eq. (23), it is straightforwardly deduced that
Ui< —«Uy, (84)

where
il EAXEL (k1 (0m 1N k+k\* 1
P 8my  2my 7 T U\ my 4a\Oxamy 40 My 4
K= (89)
N +9L Py+ yL EA EI my
2 2 08’272
Therefore
U< U (t)e ™0 Vr=14>0 (86)
which combines with the low and upper bounds of W(¢) given in Eq. (23), we have
—yL [ Py—yL [F EA [* EI (-
Mo — ¥~ / Az, 1) dz + 0 / Pz 0 dz + 22 / niz, ) dz + == / (2, 1) dz
2 0 2 0 - 8 g 2 Jy '
m L 2 m, +vL (L
2 Ly + 2]+ 380 + 350 + 3 A0 < | " | e
2 m, 2 2 0
Py+7yL [F EI m
po T / ng(z,to)dz—l—— / nt(z, to) dz + = / 1.2, 10) dz + =% (n,(L, to)
2 0 2 Jo 2
yL 1 1 K(t—to)
+m—nz(L,ro) + X3L(t0)+ X4e(fo)+ A (o) |e 0 Vizty=0. (87)
0

Since the initial values of #,(z, t),n.(z, ty), 11..(z, tp) for all z € [0, L], x3(¢p) and x4(zyp) are bounded and
sufficiently smooth, all the terms in side the square bracket in the right-hand side of Eq. (87) are bounded.
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Hence, the right-hand side of Eq. (87) is bounded and converges exponentially to zero. Boundedness and
exponential convergence of the right-hand side of Eq. (87) to zero imply that the left-hand side of Eq. (87)
must be bounded and exponentially converges to zero. This in turn implies that all the terms f(f‘ n3(z, 1) dz,

OL n2.(z, 1) dz, fOL n2(z, 1) dz, x3.(), x4.(f), and 4,(¢) are bounded and exponentially converge to zero. Next, we
use Lemmas 3 and 4 to show that fOL n*(z,t)dz and |5(z, f)| are bounded and exponentially converge to zero.

An application of Lemma 3 gives

L L
/ 0 (z, 1) dz<2n%(0, 1) + 4L* / n*(z, t)dz. (88)
0 0

Since #(0, t) = 0 and we have already proved that fOL n2(z, 1) dz is bounded and exponentially converges to zero,
Eq. (88) implies that fOL 7*(z, £)dz must be bounded and exponentially converges to zero. On the other hand,
an application of Lemma 4 shows that

L L
max (P 0) 10,0+ 2¢ /0 ) dZ\/ /0 2z 0 dz. (89)

Since #(0,7) =0 and we have already proved that foL n(z,1)dz and fOL n*(z,t)dz are bounded and
exponentially converge to zero, Eq. (89) implies that |#(z, )] must be bounded and exponentially converges
to zero.

(2) Case f; #0 and A#0: Similarly to the previous case, we consider the following Lyapunov function
candidate:

A
Uy = W3 +§A§, (90)

where 4 is a positive constant to be specified. Differentiating both sides of Eq. (82) along the solutions of Eq.
(49) and the last equation of Eq. (52) results in

L L L L

. 3vEA 3vEI yL

U, < —C3/ n*dz — i / ntdz — Y / rlfzdz—q/ nfdz—:n—cm?(L,t)
0 0 0 0 0

8m, 2m,
v LEA L : 4B4.C
_IEEA vy — s — o (L + Enir ) = (ko Pl Vo g — o
8my, m, Vi
ko1 fouy 1N? 1 (k+Kk\> 1\, 4., 1+4ypL (L,
_<m,;40(amm,) () g g [ ov

where all the positive constants cs, ¢4, ¢s, g, and 4 are specified in the previous case. Processing the same as the
previous case, we have

U< —kUy + Cpo, 92)

where « is given in Eq. (85), and Cyy = max|i/4c4? + (1 + yL)/4e foLfi dz|. The differential inequality (92)
implies that
Cua

C
Us(1)< (Uz(to) — TU2> e rU=l) = V=120, (93)

Hence Uj(?) ex;zonentially converges to the nonnegative constant Cy; /. This in turn implies that all the terms
OL n(z,0)dz, [y ni(z,0dz, OL n2(z, ) dz, x3.(t), x4.(t) and 4,(f) exponentially converge to some nonnegative

constant less than

Cu2
. (mo+yL Py+yL EA EI myg >
Kmin =

2 T 2 g2t
due to Eq. (23). Proof of boundedness (not exponential convergence to zero) of fOL n*(z,t)dz and |5(z, t)| can be
carried out in the same lines as in the previous case.
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